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Section S1: Bipolar Gaussian templateig 

 

Bipolar Gaussian template (Fig. S1) used to fit the event signals: 

𝑠𝑓(𝑡) = 𝑎𝑓 (𝑒
−

(𝑡−(𝑡𝑐−𝛿/2))2

2𝜎2 − 𝑒
−

(𝑡−(𝑡𝑐+𝛿/2))2

2𝜎2 )        (2) 

The template is characterized by the complex frequency-dependent amplitude 𝑎𝑓, the peak-width control 𝜎, the 
peak-to-peak time 𝛿 and the central time 𝑡𝑐. The complex amplitude 𝑎𝑓  is converted in modulus and phase. One low 
frequency is used in the present work (𝑓 = 0.5 MHz). Since at low frequencies signal amplitude is proportional to 
cell volume, its cube root represents an electrical measure of the cell diameter (the electrical diameter). 

 

  

Fig.  S1 Bipolar Gaussian template. 



Section S2: Finite element model of the microfluidic impedance cytometer 

The model of the electric current conduction in a microfluidic impedance cytometer developed in Ref.1 is extended 
here to account for the presence of the nanovial. The cytometer is modeled as the union of three homogeneous 
conducting regions 𝛺𝑛, 𝛺𝑐  and 𝛺𝑏, representing the nanovial domain, the cell cytoplasm, and the buffer fluid, 
respectively. Their complex conductivities 𝜎𝑛

∗, 𝜎𝑐
∗ and  𝜎𝑏

∗ are given by  𝜎𝑘
∗ = 𝜎𝑘 + 𝑖𝜔𝜀𝑘𝜀𝑣, where 𝜀𝑣 is the vacuum 

permittivity and 𝜎𝑘  and 𝜀𝑘 are the conductivity and relative permittivity of the media, respectively; moreover, 𝑖 is 
the imaginary unit, and 𝜔 denotes the circular frequency. The cell membrane is treated as a 2-D interface 𝛤 with 
conductance 𝐺𝑚𝑒𝑚  and capacitance 𝐶𝑚𝑒𝑚  per unit area, respectively, given by the electric conductivity 𝜎𝑚 and 
permittivity 𝜀𝑚𝜀𝑣 of the lipid bilayer, divided by its thickness. Therefore, the interface admittance per unit area is 
𝑌 = 𝐺𝑚𝑒𝑚 + 𝑖𝜔𝐶𝑚𝑒𝑚. It turns out that 𝑌 ≈ 𝑖𝜔𝐶𝑚𝑒𝑚, since 𝐺𝑚𝑒𝑚 ≪ 𝜔𝐶𝑚𝑒𝑚  in the radio-frequency range, and 
hence, the cell membrane essentially behaves as a capacitor. The finite interface admittance causes the electric 
potential to jump across the cell membrane.  

In the Fourier domain, the problem of determining the electric potential 𝑣 in the cytometer is stated as follows: 

−𝑑𝑖𝑣(𝜎∗∇𝑣) = 0,            in Ω𝑛 ∪ Ω𝑐 ∪ Ω𝑏          (1) 

⟦𝜎∗∇𝑣 ∙ 𝑛⟧ = 0,                on Γ                                (2) 

𝑌⟦𝑣⟧ = 𝜎∗∇𝑣 ∙ 𝑛,             on Γ                                (3) 

along with potential and flux continuity at the nanovial-buffer interface. Here  𝑑𝑖𝑣 and 𝛻 are the divergence and 
gradient operators, respectively, a dot denotes the scalar product, 𝑛 is the normal unit vector to 𝛤 pointing outside 
𝛺𝑐, ⟦∙⟧ brackets denote the jump of the enclosed quantity across the membrane, and finally, 𝜎∗ = 𝜎𝑛

∗ in 𝛺𝑛, 𝜎∗ = 𝜎𝑐
∗ 

in 𝛺𝑐, and 𝜎∗ = 𝜎𝑏
∗ in 𝛺𝑏. Equation (1) governs the electric conduction in the nanovial domain, in the cell cytoplasm, 

and in the fluid, equation (2) accounts for the continuity of the current flux density through the cell membrane, and 
equation (3) describes the membrane electric behavior.  

An insulating boundary condition is applied on the cytometer surface not covered by electrodes (𝜕𝛺𝑛𝑒) 

𝜎∗∇𝑣 ∙ 𝑛 = 0,             on 𝜕Ω𝑛𝑒                                 (4)                 

where 𝑛 is the outward normal unit vector. On the 𝑖-th electrode (𝜕𝛺𝑒𝑖
), the following electrode equation holds: 

𝑌𝑒(𝑉𝑖 − 𝑣) = 𝜎∗∇𝑣 ∙ 𝑛,             on  𝜕Ω𝑒𝑖
                (5) 

where 𝑌𝑒 = 𝐺𝑒 + 𝑖𝜔𝐶𝑒 is the electrode admittance per unit area, expressed in terms of the electrode conductance 
𝐺𝑒 and capacitance 𝐶𝑒 per unit area, 𝑉𝑖  is the electrode potential, and the right-hand side is the current density 
through the electrode. In the radio-frequency range 𝐺𝑒 is usually negligible with respect to 𝜔𝐶𝑒.  

Problem (1)-(5) is recast into the following weak formulation: 

∫ 𝜎∗∇𝑣 ∙ ∇𝑤 𝑑𝑥
 Ω𝑛∪Ω𝑐∪Ω𝑏

+ ∫ 𝑌⟦𝑣⟧⟦𝑤⟧ 𝑑𝑠
Γ

+ ∑ ∫ 𝑌𝑒𝑣𝑤 𝑑𝑠
𝜕Ω𝑒𝑖𝑖

= ∑ ∫ 𝑌𝑒𝑉𝑖𝑤 𝑑𝑠
𝜕Ω𝑒𝑖𝑖

 

where 𝑤 is an arbitrary test function and 𝑑𝑥 and 𝑑𝑠 denote volume and surface integration, respectively. Exploiting 
this formulation, the potential distribution 𝑣 induced by prescribed electrode potentials 𝑉𝑖  can be uniquely 
determined. The resulting electric current 𝐼𝑖  through the 𝑖-th electrode can then be computed as  

𝐼𝑖 = ∫ 𝜎∗∇𝑣 ∙ 𝑛 𝑑𝑠 = 
𝜕Ω𝑒𝑖

∫ 𝑌𝑒(𝑉𝑖 − 𝑣) 𝑑𝑠 
𝜕Ω𝑒𝑖

. 

The model is implemented in COMSOL Multiphysics using the Weak form physics. The device geometric model is 
shown in Fig. S2. Material parameters and device geometric parameters are listed in Tables S1 and S2 respectively. 



Details of the cell-loaded nanovial geometry are given in Section S3 and Table S3. Unless otherwise specified in the 
text, the nanovial is assumed centered in the channel cross section, with its cavity oriented towards −𝑦. 

 

 

Table S1 Material parameters used in the numerical simulations (unless otherwise specified). 

𝐶𝑒 𝜎𝑏 𝜀𝑏 𝜎𝑛 𝜀𝑛 Cell type 𝜎𝑐  𝜀𝑐 𝐺𝑚𝑒𝑚  𝐶𝑚𝑒𝑚  

0.144 

F/m2 

0.9 

S/m 
80 

0.6 

S/m 
80 

reference 0.5 S/m 60 0 S/m2 0.01 F/m2 

increased 𝐺𝑚𝑒𝑚  0.7 S/m 70 106 S/m2 0.01 F/m2 

reduced 𝐶𝑚𝑒𝑚 0.5 S/m 60 0 S/m2 0.005 F/m2 

 

Table S2 Geometric parameters of the simulated microfluidic impedance cytometer (cf Fig. S2). 

𝑊 𝐻 𝑊𝑒 𝑠𝑒 

120 μm 60 μm 90 μm 30 μm 

 

 

  

Fig.  S2 Geometric model of the microfluidic impedance cytometer.  



Section S3: Geometric model of the cell-loaded nanovial 

The geometric model of the cell-loaded nanovial comprises two entities: the nanovial and the cell adherent to its 
cavity. A 3D axisymmetric model is built, by defining the nanovial and cell profiles in a 𝑥𝑤𝑦𝑤 workplane (Fig. S3). 
Following Liu et al.,2 the nanovial geometry is defined by the difference of two circles with centers 𝑪𝟏 and 𝑪𝟐 and 
radii 𝑅1 and 𝑅2 respectively. An original parametric model is developed to define the cell profile. A cubic Bezier curve 
is used, defined by control points 𝑷𝟏 to 𝑷𝟒 and associated unitary weights. The points 𝑷𝟏 and 𝑷𝟒 (which are 
interpolation points) are given by: 

𝑷𝟏 = 𝑪𝟐 + 𝑅2 ∙ 𝒆̂      (2) 

𝑷𝟒 = 𝑪𝟐 + (𝐻cell − 𝑅2) ∙ 𝒋̂       (3) 

where 𝒆̂ = (𝑠𝑖𝑛 𝛼 , − 𝑐𝑜𝑠 𝛼), with 𝛼 = 𝑠𝑖𝑛−1((𝑎𝐷cell/2)/𝑅2), and 𝒋 ̂ is the unitary vector of the 𝑦𝑤 axis. The 
parameters 𝐻cell and 𝑎𝐷cell respectively modulate the cell height and the cell adhesion diameter. The points 𝑷𝟐 and 
𝑷𝟑 (through which the tangent at the Bezier curve in 𝑷𝟏 and 𝑷𝟒 respectively passes) are given by: 

𝑷𝟐 = 𝑷𝟏 + (𝑅2/2) ∙ 𝒕̂      (4) 

𝑷𝟑 = 𝑷𝟒 + (𝑅2/2) ∙ 𝒊̂       (5) 

where 𝒕̂ = (𝑐𝑜𝑠 𝛼 , 𝑠𝑖𝑛 𝛼) and 𝒊̂ is the unitary vector of the 𝑥𝑤 axis. The parameter values used in the numerical 
simulations are indicated in Table S3. 

 

Fig. S3 (A) Geometric model of the cell-loaded nanovial in the 𝑥𝑤𝑦𝑤  workplane. (B) 3D geometric model obtained via revolution 

around 𝑦𝑤. 

 

Table S3 Geometric parameter values of the cell-loaded nanovial. 

𝑪𝟏 𝑅1 𝑪𝟐 𝑅2 𝐻cell 𝑎𝐷cell 

[0, 0] 17.5 μm [0, 0.5𝑅1] 0.75𝑅1 20 μm 24 μm 

 

  



Section S4: Calibration of simulation data  

 

Fig. S4 Linear fit of the relationship between the electrical diameter 𝐷 and the shape parameter 𝜎 𝛿⁄  based on simulation data. 

The relevant parameters are 𝑐1 = 64 µm and  𝑐2 = −181 µm, which are in reasonable agreement with those obtained for the 

experimental data (𝑐1 = 63 µm and  𝑐2 = −161 µm, see section 3.2 of the main text). Implementing the calibration on 

experimental data rather than on simulation data allows to automatically handle minor variations of the experimental setup (e.g., 

chip to chip variability, buffer conductivity)3.    



Section S5: In-silico analysis of orientation blurring 

 

 

Fig. S5 (A) Schematic representation of empty nanovials with their revolution axis along 𝑥, −𝑦, 𝑦, 𝑧 (the sensing zone is also 

illustrated as reference). From the point of view of the generated impedance signals, the orientations along −𝑥 and −𝑧 are 

equivalent to those along 𝑥 and 𝑧, respectively. (B) Electrical diameter and electrical phase of empty/loaded nanovials passing 

through the sensing zone with different orientations. Orientation blurring can be quantified as follows (mean ± std): empty-

nanovial diameter = 28.85 ± 1.05 µm; loaded-nanovial diameter = 37.82 ± 0.95 µm; empty-nanovial phase = -0.01 ± 0.01 rad; 

loaded-nanovial phase = -0.26 ± 0.02 rad. Accordingly, orientation blurring may be neglected in most situations.  



Section S6: Examples of misclassification 

  

Fig. S6 Overlay of consecutive snapshots, electrical signals, and data point localization in the density plot of the shape parameter 
against the corrected electrical diameter for: (A) a cluster composed of one nanovial and two cells that is misclassified as a cell-
loaded nanovial based on the corrected electrical diameter, (B) A cell-loaded nanovial that is misclassified as a cluster based on 
the corrected electrical diameter. It can be noticed that the large cell partially comes out of the nanovial cavity. 



Section S7: Impedance variations induced by Triton-X exposure 

 

  

Fig. S7 Histograms of the electrical features (0.5 MHz) relevant to (A, B) a control sample and (C, D) a sample exposed to Triton-X 
at 0.01% after cell-nanovial incubation. The corrected electrical diameter is shown in panels (A, C). In both cases 
(untreated/treated), the histogram is described by the sum (red, dashed) of two Gaussian distributions (green, empty nanovials; 
black, loaded nanovials, as verified by optical inspection). The mean electrical diameter of the empty nanovial population is about 
30 µm, for both samples, while the mean electrical diameter of the loaded population is 34.5 µm for the control sample and 32.6 
µm for the treated sample. The reduction of electrical diameter after Triton-X exposure (which induces cell membrane 
permeabilization) agrees with the numerical analysis reported in Section 4.3 and Fig. 8(A) of the main text. The corrected phase 
shift is shown in panels (B, D). It is obtained from the phase shift with respect to empty nanovials by applying a compensation 
procedure for position blurring analogous to that used for the electrical diameter. Specifically: Corrected phase shift =

phase shift − (𝑐1 + 𝑐2(𝜎 𝛿⁄ )), where 𝑐1 and 𝑐2 are calibration coefficients obtained via linear fitting in the shape-

parameter vs phase-shift plane. For the untreated sample (panel B), two Gaussian distributions can be recognized: the 
loaded population (black) exhibits a phase shift of -0.07 rad with respect to the empty population. On the other hand, 
for the treated sample the phase of the loaded nanovials is similar to that of the empty nanovials (the two distributions 
overlap and cannot be individually fitted from the histogram). These results are in qualitative agreement with the numerical 
analysis reported in Fig. 8(B) of the main text.   
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