Supplementary Information

Lab on Skin: Real-time Metabolite Monitoring with Polyphenol film based Subdermal Wearable Patches

Georgeta Vulpe^{#a}, Guoyi Liu ^{#a, b}, Sam Oakley ^{#a}, Guanghao Yang ^{a,b}, Arjun Ajith Mohan ^{*a,} Mark Waldron ^a, Sanjiv Sharma ^{*a}

^a Faculty of Science and Engineering, Swansea University, Fabian Way, Bay Campus, Swansea SA1 8EN, UK

^b Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Chongqing 400044, China

Email: arjun.ajithmohan@swansea.ac.uk; sanjiv.sharma@swansea.ac.uk

Figure S1: SEM images of (A) Pt SPE, (B) Pt SPE modified with polyphenol@GOx, and (C) Pt SPE modified with polyphenol@LOx

1 µm

Figure S2: Microscopy images of (A) side view and (B) top view of single pyramid of the patch

Figure S3: *In vitro* studies carried out on polyphenol GOx modified MN patches for detection of different concentrations of glucose.

Figure S4: *In vitro* biofouling studies carried out on Pt SPEs by immersing them in artificial ISF containing bovine serum albumin.

Figure S5: CGE showing the predicted concentration from the CGM in comparison to reference concentrations from capillary blood measurements.