Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2024

Electronic supplementary information for

Multiple On-line Active Valves Based Centrifugal Microfluidics for

Dynamic Solid-Phase Enrichment and Purification of Viral Nucleic Acid

Shunji Li ‡^a, Chao Wan ‡^a, Yujin Xiao ‡^a, Changgen Liu^b, Xudong Zhao^a, Ying Zhang^a, Huijuan Yuan^a, Liqiang Wu^b, Chungen Qian^b, Yiwei Li^a, Peng Chen *^a, Bi-Feng Liu*^a

^aThe Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.

^bDepartment of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China.

This PDF file includes:

- Figure S1. Physical representations of the chip layers.
- Figure S2. Assembly of the chip.
- Figure S3. Schematic diagram of the puncture valve motor.
- Figure S4. Schematic diagram of the returnable valves.
- Figure S5. Centrifugal tube clamp dimension selection.
- Figure S6. Performance evaluation of the returnable valves.
- Figure S7. Concentration amplification plot of three target genes in the standard samples.
- Figure S8. Evaluation of magnetic bead loss rate.
- Table S1. Detailed manual operational procedures
- Table S2. Target gene sequences and corresponding primer sequences
- Table S3. Performance evaluation of functional trays.
- Table S4. Detailed operational procedures.
- Table S5. Evaluation of nucleic acid enrichment efficiency for pseudo-virus.

Other Supplementary Material for this manuscript includes the following:

- Video S1. Operation of puncture valves.
- Video S2. Operation of returnable valves.
- Video S3. Operation of magnetic valve.
- Video S4. The tolerable range of centrifugal speed for the RV.
- Video S5. Demonstration of bead mixing efficiency.
- Video S6. The functional presentation of magnetic bead fixation, waste removal and solution collection.
- Video S7. Presentation of the effects of multiple reagents released in sequence on demand.

Figure S1

Figure S1: Physical representations of the chip layers: (a) Bottom cover layer - 0.3 mm PMMA; (b) Elastic silicone layer - 1 mm; (c) Drainage layer - 0.3 mm PMMA; (d) Tin foil layer - 0.3 mm PMMA; (e) Liquid storage or reagent layer - 2 mm PMMA; (f) Top cover layer - 0.3 mm PMMA.

Figure S2

Figure S2: Assembly of the chip: (a) Positioning disc; (b) Assembly of the bottom layer - first layer; (c) Assembly of the second layer; (d) Assembly of the third layer; (e) Assembly of the fourth layer, paying attention to first place the tin foil strip at the corresponding position on the back of this layer; (f) Assembly of the fifth layer; (g) Assembly of the sixth layer, completing the main structure of the chip; (h) Assembly of the centrifuge tube used for collecting purified nucleic acid.

Figure S3

Figure S3: Schematic diagram of the puncture valve motor (top) and its physical representation (bottom, purchased from Beijing Yinshi Robotics Company, total travel distance of 10 mm, using TTL serial communication).

Figure S4

Figure S4: The mechanical structure and principle diagram of the returnable valves. (a). Plan view of the key parts of the centrifugal function disk and the bottom mechanical control structure; (b). Valve turns off: coil spring-1 would be moved upward and coil spring-2 would be moved to the right due to the need of the automatic reset of the coil, and when the mechanical control structure is left, the actuator rod would be fixed above due to coil spring-2; (c). Valve turns on: coil spring-2 would be moved to the left and coil spring-1 would be moved down due to the need of the automatic reset of the coil, ultimately causing the actuator rod to be fixed below.

Figure S5: Centrifugal tube clamp dimension selection. (a) 14 centrifuge tube clamp designs. (b) Physical image of centrifuge tube fixation effect after centrifugation at 1500 RPM.

Figure S6

Figure S6: Performance evaluation of the reversible valve: (a) During centrifugation at 1500 rpm; (b) Physical image after centrifugation at 1500 rpm, liquid appears inside the centrifuge tube at the location indicated by the red arrow.

Figure S7

Figure S7: Concentration amplification plot of three target genes in the standard samples: (a) orf1ab gene; (b) N gene; (c) E gene.

Figure S8: Evaluation of magnetic bead loss rate (from left to right: before extraction, after one round of magnetic actuation and removal of the supernatant, after two rounds of magnetic actuation and removal of the supernatant).

Table S1

Step	Operation	Duration
1	Adding sample	1 min
2	adding the lysis buffer	1 min
3	Shock mixing the magnetic beads with the sample and reagents	2 min
4	Incubation at room temperature	10 min
5	The centrifugal tube is placed on the magnetic rack and draws the liquid	6 min
6	Adding wash 1 buffer and mixing	2 min
7	The centrifugal tube is placed on the magnetic rack and draws the liquid	6 min
8	Adding wash 2 buffer and mixing	2 min
9	The centrifugal tube is placed on the magnetic rack and draws the liquid	6 min
10	Adding wash 2 buffer and mixing	2 min
11	The centrifugal tube is placed on the magnetic rack and draws the liquid	6 min
12	Drying of magnetic beads	10 min
13	Adding elution buffer and mixing	3 min
14	Incubation at 65°C	5 min
15	The centrifugal tube is placed on the magnetic rack and draws elution buffer	6 min
16	Overall time	68 min

Table S1 Detailed manual operational procedures

Table S2

Table S2 Target gene sequences and corresponding primer sequences

SARS-Cov-2	Target gene sequences (5'-3')	Primer sequences (5'-3')
gene		
	CCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGC	
	GGCAGTCAAGCCTCTTCTCGTTCCTCATCACGTA	F:
Ν	GTCGCAACAGTTCAAGAAATTCAACTCCAGGCA	GGGGAACTTCTCCT
	GCAGTAGGGGAACTTCTCCTGCTAGAATGGCTG	GCTAGAAT;
	GCAATGGCGGTGATGCTGCTCTTGCTTGCTGCT	B:

	GCTTGACAGATTGAACCAGCTTGAGAGCAAAAT	CAGACATTTTGCTC
	GTCTGGTAAAGGCCAACAACAACAAGGCCAAAC	TCAAGCTG
	TGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAG	
	AAGCCTCGGCAAAAACGT	
	ATCGTGTTGTCTGTACTGCCGTTGCCACATAGAT	
	CATCCAAATCCTAAAGGATTTTGTGACTTAAAAG	
	GTAAGTATGTACAAATACCTACAACTTGTGCTAA	F:
Orflab	TGACCCTGTGGGTTTTACACTTAAAAACACAGTC	CCCTGTGGGTTTTA
	TGTACCGTCTGCGGTATGTGGAAAGGTTATGGCT	CACTTAA;
	GTAGTTGTGATCAACTCCGCGAACCCATGCTTCA	B:
	GTCAGCTGATGCACAATCGTTTTTAAACGGGTTT	ACGATTGTGCATCA
	GCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGG	GCTGA
	CACAGGCACTAGTACTGATGTCGTATACAGGGCT	
	TTTGACATCTACAATGATAAAGTAGCTGGTTTTG	
	CTAAATTCCTAAAAACTAATTGTTGT	
	ATGTACTCATTCGTTTCGGAAGAGACAGGTACGT	F:
	TAATAGTTAATAGCGTACTTCTTTTTCTTGCTTTC	ACAGGTACGTTAAT
Е	GTGGTATTCTTGCTAGTTACACTAGCCATCCTTA	AGTTAATAGCGT;
	CTGCGCTTCGATTGTGTGCGTACTGCTGCAATAT	B:
	TGTTAACGTGAGTCTTGTAAAACCTTCTTTTAC	ATATTGCAGCAGTA
	GTTTACTCTCGTGTTAAAAATCTGAATTCTTCTA	CGCACACA
	GAGTTCCTGATCTTCTGGTCTAA	

Table S3

Table S3 Performance evaluation of functional trays

Modules	Punc	ture valve	Reversible valve		Mix	Mixture	
Conditions	Distance (mm)	Results	Speed (rpm)	Results	Angle (°)	Results	
1	0.1	Unpierced	500	Storage	5	No	
2	0.5	Unpierced	800	Storage	10	No	
3	1	Unpierced	1000	Storage	20	No	
4	1.5	Pierced	1300	Storage	30	Yes	
5	2	Silicon rupture	1500	Leakage	40	Yes	

Table S4

Table S4 Detailed operational procedures

Step	Operation	RV-1	RV-2	Rotation speed (rpm)	Duration
1	Adding sample	off	off	1000	10 s
2	Puncture the lysis reagent chamber and	off	off	1000	15 s

Step	Operation	RV-1	RV-2	Rotation speed (rpm)	Duration
	release the lysis buffer				
3	Puncture the binding reagent chamber and release the binding buffer	off	off	1000	15 s
4	Thoroughly mixing the magnetic beads with the sample and reagents	off	off	Mixing by spinning the centrifuge back and forth with a deflection angle of 30°	10 min
5	Capture of magnetic beads	off	off	0	15 s
6	Transfer waste solution to waste chamber	on	off	3000	10 s
7	De-magnetization	off	off	0	5 s
8	Puncture the wash 1 reagent chamber and release the wash 1 buffer	off	off	1000	15 s
9	Thoroughly mixing the magnetic beads with wash 1 buffer	off	off	Mixing by spinning the centrifuge back and forth with a deflection angle of 30°	15 s
10	Capture of magnetic beads	off	off	0	15 s
11	Transfer waste solution to waste chamber	on	off	3000	10 s
12	De-magnetization	off	off	0	5 s
13	Puncture the wash 2 reagent chamber and release the wash 2 buffer	off	off	1000	15 s
14	Thoroughly mixing the magnetic beads with wash 2 buffer	off	off	Mixing by spinning the centrifuge back and forth with a deflection angle of 30°	15 s
15	Capture of magnetic beads	off	off	0	15 s
16	Transfer waste solution to waste chamber	on	off	3000	10 s

Step	Operation		RV-2	Rotation speed (rpm)	Duration
17	De-magnetization	off	off	0	5 s
18	Drying of magnetic beads	off	off	0	10 min
19	Puncture the elution reagent chamber and release the elution buffer	off	off	1000	15 s
20	Thoroughly mixing the magnetic beads with the elution buffer	off	off	Mixing by spinning the centrifuge back and forth with a deflection angle of 30°	5 min
21	Capture of magnetic beads	off	off	0	15 s
22	Transfer nucleic acid solution to tube	off	on	3000	10 s

Table S5

Table S5 Evaluation of nucleic acid enrichment efficiency for pseudo-virus

SARS-Cov-2	М	anual	Chip		al Chip Ch		Chip/Manual
gene -	CT values	Concentrations (copies/µL)	CT values	Concentrations (copies/µL)	(%)		
Ν	27.33	6760.83	24	41686.94	616.60		
Orflab	26.33	7943.28	22.67	61659.50	776.25		
E	26.66	3630.78	21.66	162181.01	4466.84		