## Integration of 3D Printed Mg<sup>2+</sup> Potentiometric Sensors into Microfluidic Devices for Bioanalysis

Sarah Farahani,<sup>1</sup> Dalton L. Glasco,<sup>1</sup> Manar M. Elhassan<sup>1,3</sup>, Pedaballi Sireesha<sup>1</sup>, and

Jeffrey G. Bell<sup>1,2,\*</sup>

<sup>1</sup>Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.

<sup>2</sup>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Washington 99164, United States

<sup>3</sup>Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt

\*corresponding author – <u>Jeffrey.g.bell@wsu.edu</u>

## List of contents:

| Figure SI.1.                                                                       | 3 |
|------------------------------------------------------------------------------------|---|
| Microfluidic Device and housing dimension                                          |   |
| Figure SI.2.                                                                       | 3 |
| Potentiometric experimental setup                                                  |   |
| Table SI.1.                                                                        | 4 |
| Optimization of Mg <sup>2+</sup> ISM composition                                   |   |
| Figure SI.3.                                                                       | 4 |
| 3D printable Mg <sup>2+</sup> ISM vs. PVC-based Mg <sup>2+</sup> ISM contact angle |   |



Figure SI.1. A. Schematic representation of the 3D printed microfluidic device with associated dimensions. dimensions of the 3Dprinted components. Ai. 3D-printed microfluidic: top view. Aii. 3D-printed microfluidic: side view. Aiii. 3D-printed microfluidic: 3D view. B. Schematic representation of Bi. 3D-printed electrode housing: top view. Bii. 3D-printed electrode housing: side view. Biii. 3D-printed electrode housing: 3D view.



Figure SI.2. Potentiometric experimental setup of 3Dp-Mg<sup>2+</sup>-ISE integrated into the 3D-printed microfluidic device

| Table SI.1. Optimization | n of Mg <sup>2+</sup> | ISM con | nposition. |
|--------------------------|-----------------------|---------|------------|
|--------------------------|-----------------------|---------|------------|

| DOS (%)          | Slope (mV/Decade) | Linearity (R <sup>2</sup> ) | Linear range (mM) | Conditioning concentration |
|------------------|-------------------|-----------------------------|-------------------|----------------------------|
| 12               | 31.3              | 0.989                       | 10- 0.15          | 100 μM                     |
| 4                | 30.7              | 0.984                       | 10- 0.078         | 100 µM                     |
| 8 (Current Work) | 27.2              | 0.999                       | 10- 0.039         | 100 µM                     |
|                  | 26.7              | 0.999                       | 10- 0.625         | 1 mM                       |



Figure SI.3. Water Contact Angle measurements for 3Dp-Mg<sup>2+</sup>-ISM (A) vs. PVC-Mg<sup>2+</sup>-ISM (B).