
S1 Theoretical Model

In this section, equations for straight channel resistance, syringe capacitance and valve capacitance
are derived. Then, full circuit equations connecting the individual circuit elements are derived.

S1.1 Defining Individual Circuit Elements

S1.1.1 Straight Channel Resistance

Figure S1: Straight channel resistance schematic. Filled circles are ’packets’, which are arbitrary
volumes of the fluid containing a fixed number of fluid molecules. The size of the circle corre-
sponds to the volume of the packet at that location.

We follow a procedure similar to that in [1]. We assume that in every infinitesimal section of
the channel, flow can be modeled as incompressible, and therefore follows the Poiseuille equation.
While compressibility plays a role over a large channel length, we assume that in infinitesimal
sections the pressure does not change appreciably and therefore the fluid is not differentially
compressed on either end of the section. Then, the pressure-flow rate equation across any arbitrary
mth infinitesimal section of the channel follows the relation:

−(Pm+1 −Pm) = Qav,m ×RdL (1)

where Pm+1 and Pm are pressures at downstream and upstream ends of the section respectively,
Qav,m is the average flow rate through the section, RdL is the resistance of the channel if an
incompressible liquid was flowing through it, and is given by Rl =

12µdL
wh3 Here, µ is the viscosity

of the fluid, dL is the length of the infinitesimal section, w is the width of the channel and h is the
height of the channel with a rectangular cross section.

Following the ideal gas law, we have PV = nRT , where n is number of moles of the fluid, R is
the ideal gas constant, T is the absolute temperature. We assume that there is no accumulation of
fluid in the channel, so, following mass conservation, we would have the same number of moles
of the fluid passing through each section in the channel. Then, P0 ·Q0 = Pm ·Qm = Pm+1 ·Qm+1 =
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PM ·QM , where Qi is the volumetric flow rate across any ith interface. Then, Qi = P0 ·Q0/Pi , and
eq.1 then simplifies to the differential equation:

−P
dP
dL

= P0Q0 ·
12µ

wh3 (2)

Solving eq. 2 across the channel we get

P2
0 −P2

M

2
= PMQM

12µLchannel

wh3 = PMQMRl (3)

Where Lchannel is the total length of the channel, Rl is the resistance of the channel if an incom-
pressible fluid with the same viscosity was passed through the channel, and only depends on the
dimensions of the channel and viscosity of the fluid. For a compressible fluid, the viscosity can
change based on the local pressure, but within the range of pressure used in our system, at room
temperature, this change is negligible.

Since P2
0 −P2

M can also be written as (P0 +PM)× (P0 −PM), eq. 3 simplifies to give Rg, de-
fined as the ratio of the pressure drop across the resistor to the flow rate (at the outlet), according
to the traditional definition of resistance:

Rg =
P0 −PM

QM
=

2PM

P0 +PM
Rl (4)

S1.1.2 Syringe Capacitance

Control Volume

Qout

dV/dt

A0.dL/dt

Figure S2: Syringe capacitance schematic. As the plunger of the syringe is pushed forward, the
fluid inside the syringe compresses, the walls of the syringe distend, and some of the fluid is
expelled out of the syringe.

We define control volume as directly adjacent to the syringe plunger at time t +dt. With this
definition, control volume is fixed in the frame of reference of the syringe. We then apply the
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mass conservation equation [2]:∫
CV (t)

∂ρ

∂ t
dV +

∫
CS(t)

ρvndA = 0 (5)

where ρ is the density of the fluid inside the control volume, V is the volume of the control
volume, vn is the velocity component normal to control surface, CV (t) is the control volume at
time t and CS(t) is the surface of the control volume at time t. Note that control surface is defined
as the surface enclosing the control volume. This is a vector quantity directed along the outward
normal to adjacent portion of the control volume.

The first term on the left hand side of eq. 5 simplifies to V · dρ

dt , since the control volume is defined
to have a fixed volume. Applying a continuity boundary condition at all surfaces of the control
surface, the second term on the left hand side simplifies to ρQout +ρ

dV
dt −ρA0

dL
dt . This simplifies

eq. 5 to:

V · dρ

dt
+ρQout +ρ

dV
dt

−ρA0
dL
dt

= 0 (6)

In actuality, ρ = ρ(P,T ) where P and T are the pressure and temperature of the fluid respectively.

Based on [3] and from the definition of bulk modulus β , we have β = ρi · ∂P
∂ρ

∣∣∣∣
ρi,Ti

where ρi and

Ti are the local density and temperature respectively at the location where the differential ∂P
∂ρ

is
evaluated. Then,

ρ̇ =
∂ρ

∂P
· ∂P

∂ t
=

ρi

β
· Ṗ (7)

and eq. 6 simplifies to:
V · ρ

β
· Ṗ+ρ ·Qout +ρV̇ −ρA0L̇ = 0 (8)

Here ρi is replaced by ρ because, according to eq. 6, ρ is the local density of the fluid which is
the same as ρi in eq. 7 at any given location.

We define syringe capacitance as the ratio of ’additional volume’ stored in the syringe upon
pressurization, represented by the functional form A0L̇−Qout

Ṗ . Upon rearranging the terms in eq. 8,
we get:

CS,tot =
A0L̇−Qout

Ṗ
=

V
β
+

V̇
Ṗ

(9)

The term V̇/Ṗ describes the capacitance as a result of the deformation of syringe walls when
pressurized, and can be evaluated based on pressure vessel dynamics equations [4] as:

CS,w =
V̇
Ṗ
=

2VSr(1−ν/2)
Eb

(10)

Where VS is the volume enclosed within the syringe, r is the radius of the syringe, ν is the
Poisson’s ratio of the syringe material, E is the Young’s modulus of the material and b is the
thickness of the walls of the syringe.
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Qin dV/dt

Control Volume

Figure S3: Valve capacitance schematic. As a result of the influx of fluid into the valve, the
membrane distends and the fluid contained within the valve compresses.

S1.1.3 Valve Capacitance

We define the control volume as the volume enclosed underneath the membrane and connected to
a syringe via microfluidic channel. Applying mass conservation eq. 5 to the valve, we get:

V
dρ

dt
+ρ

dV
dt

−ρQin = 0 (11)

Applying the definition of bulk modulus from eq. 7, and defining Cvalve = Qin/Ṗ we get:

CV,tot =
V
β
+

V̇
Ṗ

(12)

The term V̇/Ṗ describes the deformation of the membrane when the valve is pressurized, and has
been evaluated previously [5,6] as:

CV,m =
V̇
Ṗ
=

6w6(1−ν2)

π4Et3 (13)

Where w is the width of the valve, ν is the material’s Poisson’s ratio, E is the modulus of elasticity,
t is the thickness of the valve membrane.

In this model we have not included the permeability of fluid across membrane, because within
the range of our operating parameters this has negligible impact on the full circuit simulation
results, as described in section S3. In case the membrane permeability cannot be ignored, it can
be modeled like in section S3 with appropriate permeability values evaluated experimentally.

S1.2 Full Circuit Model

S1.2.1 Pressurization

From the gas resistance definition in eq. 3, we can write flow rates at the syringe (QS) and valve
(QV ) ends of the resistor with liquid resistance R0 as

QS =
P2

S −P2
V

2PSR0
; QV =

P2
S −P2

V

2PV R0
(14)
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Figure S4: Full circuit schematic during valve pressurization. Since the valve is not open, the
portion of the circuit between the syringe and the valve effectively behaves as a closed system.

In the syringe capacitance definition, we know from fig. 2B that the contribution from the
syringe wall deformability towards total capacitance is negligible compared to that from the fluid
compressibility. So, we can simplify the syringe capacitance as CS,tot = A0L̇−Qout/Ṗ. Defining
A0L̇ as Q0, which is the flow rate set on the syringe pump, eq. 9 simplifies to:

Q0 −QS

ṖS
=

VS

β

For an isothermal process, bulk modulus β is equal to the local pressure, and the volume enclosed
within the syringe at any given time t can be written as A0L0 −Q0t, where L0 is the total length
of the syringe volume. Then, the above equation becomes:

dPS

dt
= PS ·

Q0 −Qout

A0L0 −Q0t

Which, upon substituting for QS based on eq. 14, simplifies to

dPS

dt
=

PSQ0

A0L0 −Q0t
−

P2
S −P2

V

2R0(A0L0 −Q0t)
(15)

From valve capacitance in eq. 12, we have

ṖV = (QV −V̇V )×
β

VV

Where VV is the volume enclosed underneath the valve membrane. Combining the above with eq.
14, we get

dPV

dt
=

(
P2

S −P2
V

2PV R0
−V̇V

)
PV

VV

which simplifies to
dPV

dt
=

P2
S −P2

V

2R0VV
− V̇V ·PV

VV

Recalling that the capacitance contribution from the membrane deformability is defined as
V̇V =CV,m · ṖV , this simplifies to

dPV

dt
=

P2
S −P2

V

2R0[VV +CV,m ·PV ]
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Substituting VV =VV,0 +CV,m · (PV −Pth,close) based on CV,m definition, we get

dPV

dt
=

P2
S −P2

V

2R0[VV,0 +CV,m(2PV −Pth,close)]
(16)

Equations 15 and 16 are solved to give the pressure-time relations for the syringe and valve
respectively during the pressurization half of the cycle.

S1.2.2 Depressurization
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Figure S5: Full circuit schematic during valve depressurization. The valve vents to atmospheric
pressure through resistor R1 even as the syringe continues to pressurize the valve through R0.

During depressurization, the syringe dynamics stay identical to the case of pressurization, so
the syringe pressure equation is the same as eq. 15. Applying the control volume analysis to the
valve, we get

Qin −Qout = V̇ +
V
β
· Ṗ (17)

We can write the flow rates in terms of the pressure at either side of the valve and connecting
resistances as:

Qin =
P2

S −P2
V

2PV R0
; Qout =

P2
V −P2

atm

2PV R1
(18)

Given CV,m = V̇V/Ṗ and VV =VV,0 +CV ,m(PV −Pth,open), eq. 17 and 18 combine to give

dPV

dt
=

1
VV,0 +CV,m[2PV −Pth,open]

(
P2

S −P2
V

2R0
− P2

V −P2
atm

2R1

)
(19)

Equations 15 and 19 are solved to give the pressure-time relations for the syringe and the valve
respectively during the depressurization half of the cycle.
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S2 Simulation Results

S2.1 Capacitance Plots

Figure S6: (A.) Total syringe capacitance, (B.) Total valve capacitance and their contributors; y
axis on linear scale (C.) Syringe capacitance, liquid capacitance as syringe empties

Even though the syringe and the valve capacitance are functions of pressure, they do not
change appreciably within the pressure range realized in the microfluidic device. Individual
capacitance contributors and total capacitance for both elements of the microfluidic circuit are
plotted on the linear scale in Fig. S6A, 6B against changing pressure to demonstrate the small
changes in capacitance values with greater sensitivity. The X axis ranges from the threshold
closing pressure to the threshold opening pressure.

Fig. S6C demonstrates that capacitance as a result of the syringe wall distension and the
liquid compression also changes as the syringe empties, even though it is not visually evident in
fig. 2C because gas compliance is much higher in comparison.

S2.2 Single cycle simulation results with different resistance values

Case 1: R0 = 5e11,R1 = 4e13
The valve fails to vent because the downstream resistance is too high. While the syringe pump

Figure S7: R0 = 5e11, R1 = 4e13 – (A.) Pressurization, (B.) depressurization and (C.) combined
pressure graph.

stays on, pressure keeps on building up within the syringe and consequently in the valve.

Case 2: R0 = 5e11,R1 = 4e12
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Even after a one order of magnitude reduction in the R1 value, depressurization does not occur.

Figure S8: R0 = 5e11, R1 = 4e12 – (A.) Pressurization, (B.) depressurization and (C.) combined
pressure graph.

Valve pressure briefly drops after the valve opens, but then the increase in pressure from the
syringe overpowers the venting from the valve, and both the syringe and vale pressure increase
with time.

Case 3: R0 = 5e11,R1 = 4e11
When R1 is comparable to R0, and in fact when R1 is slightly smaller than R0, the valve is able to

Figure S9: R0 = 5e11, R1 = 4e11 – (A.) Pressurization, (B.) depressurization and (C.) combined
pressure graph.

successfully depressurize. Single cycle time period is also reasonable.

Case 4: R0 = 5e10,R1 = 4e11
However, R1 is expected to be larger than R0. So, we try reducing R0 while keeping R1 the same
and see if we can get a realistic pressurization-depressurization curve. This oscillation cycle
looks very similar to the one obtained from experiments. The time period also looks similar to
experimental value. The estimated range for the resistance upstream of the valve is between 1e10
and 5e11, so these values are reasonable and are used for the other simulation results in the paper.

Discussion: It was found that when the downstream resistance is set two orders of magnitude
higher than upstream resistance as in the case of the serpentine channel, the oscillator fails to
discharge - in contrast to experimental results. Surprisingly, in similar computational models
of liquid systems, the higher serpentine resistance was well tolerated but can be explained by
the range of flow rates used. When a liquid working fluid is used to generate oscillatory flow
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Figure S10: Figure 5: R0 = 5e10, R1 = 4e11 – (A.) Pressurization, (B.) depressurization and (C.)
combined pressure graph after one oscillation cycle.

with the same microfluidic device design, the flow rate that is typically used is much lower (2-10
µL/min compared to 500 µL/min in case of gas). When the flow rate is very high, the rate of
pressurization is correspondingly high. If the downstream resistance is also very high, then valve
depressurization is constrained, and in some cases cannot match with the rate of pressurization,
and the valve fails to discharge. This seems to indicate that our assumptions regarding the fluidic
circuit discharge may be incorrect - the branch of the oscillator circuit connecting to the other valve
cannot be ignored during valve discharge and must be considered in our model. Consequently, the
effective drain resistance would be lower because the non-pressurized underside of the adjoining
valve would behave as a capacitor and the (lower) resistor connecting the two valves would then
act as the drain resistance.
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S3 Membrane permeability to air

We can modify the model equations to include gas permeability through PDMS membrane to
estimate its impact to over all results. When fluid leaks through the PDMS membrane, the control
volume equation changes to

V
dρ

dt
+ρ

dV
dt

−ρQin +ρQout = 0 (20)

This yields the valve equation:

ṖV = (QV −V̇V )×
β

VV
(21)

Substituting in the circuit equation, we get the following for the valve pressure during the
pressurization half of the cycle.

dPV

dt
=

[
P2

S −P2
V

2R0
−QMPV

]
· 1
(VV,0 +CV,m(2PV −Pth,close)

(22)

From our experiments, we obtain a conservative estimate for the leakage flow rate as 3.84 µL/min.
Substituting and running the simulations with the updated pressurization equation, we get the
following plots:

Figure S11: (A.) Pressure trace for one of the valves in the oscillator system over 13 pressurization-
depressurization cycles and (B.) Time period over 13 oscillations, with (red) and without (black)
gas permeability across PDMS membrane

We see from the updated figures that the pressure trace and the time period are nearly identical
regardless of PDMS permeability. This is expected, because across roughly 100 mins of the
oscillations shown here, of which about half the time accounts for pressurization of the valve,
leakage accounts for a total of 192 µL, which is about 0.32% of the syringe volume. Looking
through literature for the measurement of gas permeability through PDMS membranes, we find
that the highest reported flow rate for a comparable pressure, membrane thickness and mixing
ratio is around 4 µL/min [7,8,9], which is similar to our conservative measured value. Therefore,
we can safely neglect gas permeability without a significant loss of accuracy.
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Data to assess membrane permeability was collected by running the syringe pumps connected
to the oscillators, as depicted in Figure 4 in the main text. However, instead of running the
syringe pump continuously, both syringes were pushed to pressurize their respective valves, and
before oscillations began between the two fluid lines, the syringe pump was stopped to assess the
pressure drop across the closed valves over time. We assumed any pressure drop would be due
to the gas loss from the permeability of PDMS, and that this would occur most quickly through
the membrane. We chose to test oscillators with the thinnest membrane used for the study, a 20
µm membrane, presuming that this would lead to the most rapid loss due to the distance needed
for gas diffusion across the PDMS to atmosphere. To calculate the membrane permeability, we
calculated the leakage flow rate by taking the product of the difference in the channel’s pressure
over time and the total volume in the system once the syringe pump was stopped, and dividing it
by product of the total time measured and atmospheric pressure. This yields a leakage flow rate
equation for determining air loss through the PDMS system.

Leakage Rate =
(Pf −Pi)× (V )

(t f − ti)× (Patm)
(23)

Where Pi and Pf are the initial and final pressures respectively, ti and t f are the initial and
final time points respectively, V is the volume of our system, which we take to be the combined
volume of the syringe, tubing and valve, and Patm is the atmospheric pressure.

We assessed having both valves closed and captured both permeability rates simultaneously,
in addition to having one valve open before we stopped the syringe. In the case of one valve
being open, we would see the pressure decay for the open valve, while the other valve remained
closed. Examples of data collected by the sensors of the syringes being pushed, the line and valves
pressurizing, and a maintained pressure in the line is shown below in Figure S12. A total of 6
closed valves were measured. The average value of leak rate across closed valves was calculated
to be 2.96 µL/min (standard deviation of 1.92 µL/min).
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Figure S12: Pressure profiles of different forced air oscillators with one or two valves in a closed
position to validate membrane permeability. Pressure data collected from two different 20 µm
membrane devices are shown in the panels. The oscillator devices were drived by 60 mL syringes
filled with air, which were run at 1,000 µL/min for 3 minutes before stopping the syringe pump.
The pressure was monitored for at least 120 minutes to assess change in pressure. The oscillator
in A) had both valves pressurized and in a closed position, reminiscent of pressurization prior to
oscillations commencing for the first time. Leakage flow rates of these two closed valves was
calculated to be 3.84 and 2.18 µL/min. The oscillator in B) had one valve open prior to stopping
the pump, while the other valve remained in a closed state. The leakage flow rate from this
oscillator was calculated to be 5.68 µL/min, the max leakage rate observed

S4 Experimental System

S4.1 Microfluidic Oscillator Pressure Profiles

Forced air microfluidic oscillators were evaluated over a range of flow-rate conditions, membrane
thicknesses, and using different syringe sizes for the actuation of the devices. The figures provided
below are meant to provide readers a broader array of demonstration that the microfluidic
oscillators successfully oscillate to provide context for the readers that decreasing period is
persistent across forced-air oscillations regardless of the conditions tested.
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Figure S13: Pressure profiles of different forced air oscillators demonstrate oscillatory behavior
across different membrane thicknesses, syringe sizes and flow rates. A) A 100 µm membrane
device run at 500 µL/min ; B) a different 100 µm membrane device run at 500 µL/min; C) a 100
µm membrane device run at 400 µL/min; D) a different 100 µm membrane device run at 400
µL/min; E) a 70 µm membrane device run at 1000 µL/min; F) a 70 µm membrane device run at
750 µL/min (with 140 mL syringe); G) a 70 µm membrane device run at 400 µL/min; H) a 20
µm membrane device run at 500 µL/min; H) a 20 µm membrane device run at 200 µL/min. All
syringes used for forced-air actuation of the microfluidic oscillators were 60 mL syringes unless
otherwise noted.
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