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1 One-dimensional Poisson-Nernst-Planck equation
with ions of different diffusivities

We follow the derivation of section 3.1 of the main text, consid-

ering that the cations and anions have a different diffusion coef-

ficient respectively D™ and D~. In these conditions the transport
equations (1a) and (1b) of section 3.1 become:

dc dy
+_ _pt+ +
Jt= DH(d +c dx> (1a)
- =gy (de _dy
J =-D H(—dx c sz) (1b)

while equation (1c) remains the same. Introducing the reduced
coordinates ¥ = x/W, the reduced concentrations &+ = cteH /||,
the average concentration ¢ = (¢* +¢&7)/2, and the reduced fluxes
K+t~ =eWJ* /|6|DF, the 1D-PNP equations become:
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These equations in K*,K~,¢ and y are exactly the same as equa-
tions (2) of the main text, and therefore the modified selectivity
n=(K"—K")/(KT+K™) replaces 1 in equation (3a) while (3b)
is unchanged.

As boundary condition we assume the continuity of the non-
dimensional electrochemical potential of the anions and cations,
respectively Inc™ +w and Inc™ — y, at x =0 and ¥ = 1. With an
electrolyte concentration ¢y, at the level of the nanoslit in the high
concentration nanoduct and a reduced potential y;,, the boundary
conditions at ¥ = 0 write:

Inéj, + yj, = Ind= (01) £ w(0T)
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Together with the charge balance in the nanoslit (equation (1c) of
the main text) ¢+(07) — ¢~ (0") = —2sgn(o), the anion and cation
concentrations at entrance of the nanoslit are:

&(0%) = Fsgn(o) +/1+, @

Thus the reduced electrolyte concentration %, at the entrance of
the nanoslit is:

ér (0+
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The same relation holds between %; and &, at the outlet of the
nanoslit £ = 17, and these relations constitute equation (4a) of the
main text. The relation between w(1~) and y; is the analogous
of equation (3) at ¥ =1, so that :
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With Ay = v, — v, and o < 0 this is equation (4b) of the main

text.

The modified selectivity n =
in equation (5a):

(K" —K7)/(Kt +K) replaces ¢

Ch—1N
In—+%,—-%,=—-Ay+& (©)
n G—n h— ¢ L4
while & is given by the unchanged equation (5b). Equation (6a)
becomes:
KE=(14n)(-Ay +&) 7

from which one get the cations and anions fluxes and the electri-
cal current:

+_ Di\0|
J = (I+£n)(-Ay+&) 8
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Finally in order to recover the selectivity ¢ one introduces the av-
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erage diffusion and diffusion contrast:

Dt +D~ Dt —D~
D=—"" == — 1
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When the ions diffusity are equal, £ =0 and r = 17, and the ex-
pressions reduce to the one of the main text.

2 Optimizing the net power in the 1D-
approximation of the exchanger

Starting from eq (15) in the main text

Phet (12)
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we search for the exchanger parameters which maximize the net
extractable power density for fixed chemical conditions (i.e sur-
face charge, salinity, solutions viscosity, diffusion coefficient, tem-
perature). We optimize the geometric parameters by keeping con-
stant the ratio L/b = A. Using the relation H = |o|/(eCyDuy) we
introduce the fixed volume and power

_ KDn|o]| P_kBTD|0'|
© kgTeCy e

p Y22 [ Sh\?
Pret = — | [ — - 1
net Wb <f 2Wb2 (DMH) ) ( 4)
the power P is equal to 16 pW for a surface charge |¢| = 0.64C/m?
at ambient temperature. The non-dimensional power factor f is
a function of non-dimensional numbers only, and therefore does

not depend on the specific value of . There is thus an optimum
value of b corresponds to d P, /db =0 at fixed f:

Sh |3V A2
bopt*m Wf (15)

With this optimum value the net power becomes

2\/5 P DMH 3/2
3V3VWYAZ Sh-
which corresponds to a ratio between the produced electrical

power and the dissipated hydraulic power equal to 3, and con-
sequently a net power twice larger than the dissipated power.

(13)

so that

ynet = (16)

The maximum net power is reached when f3/2Duy /Sh is max-
imum. This maximum is expected to be found at a value of Sher-
wood large enough (Sh/Duy > 5) so that the empirical master
law (14a) reduces to

71 (e =) = W) (Wo((s +2)e2) - 2)

where W, is the principal branch of the Lambert W function.
In this framework 73/2Duy /Sh is a function of the single vari-
able y = Sh/Duy. It has a maximum at Sh/Duy = 14.83 of value
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F3/2Duy /Sh=0.1050, corresponding to f = 1.34. Consequently

v
bop = 1572/ (17)
ynet max = 0~057L (18)
’ AVWY

It is worth to note that the prefactor 15.7 and 0.057 come ex-
clusively from the mathematical properties of the master func-
tion (17), and are independant of the values of chemical, flow, or
geometrical parameters. Replacing ¥ and P by there respective
expression one gets
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In this optimal configuration, the optimal average velocity U,
for nanoducts of square section (corresponding to K =7.1) is

ShDHL 1 |D|o|kgT
Yor = 5wz = 2\ Knw
2Wbhg, nWe

It is worth noting that the only geometrical variable which im-
pacts this optimal velocity is W. The pressure difference AP,
between the entry and the exit of one nanoduct of the elemental
converter is consequently

Uopt A
APy = K 22
opt

=0.0321 kgTCy 21)

It is a quite remarkable fact, that once the exchanger is designed
with a = b = b,p;, the pressure needed to reach the maximum
net harvested pressure depends only on the osmotic pressure of
the high salinity solution, and not other parameters. At am-
bient temperature, for a square microchannel, D = 10~? m?/s,
n = 1073 Pas.s, |6| = 0.64 C/m?, and sea water salt concentra-
tion Cy = 0.6 M, ¥ = 44 nm? while for a reference concentration
Co=1M, % = 16 nm>. The last volume is useful to be able to
estimate easily byp and &q, for different solute concentration

as
Co, [
Cy P

P =0.057— 23

nma Co AT, (23)

3 Asymptotic behaviour of £, at small and large
Sherwood

In the 1D-approximation of the Elemental Exchanger, the general
advection diffusion equations in the high and low concentrations
microchannels are give by equation (12) of the main text that we



rewrite as:
1 9%2¢, dg, (1+1) _
TR E e (€ —Ay)=0 (24a)
iﬂ_ﬁ (1+t)(£7—Al[/)—O (24b)

with ¢,; = ¢jeH/|o|, t and & given by eqs (4a, 5a) and (5b)
of the main text. The sum and difference leads to diffusion-
convection equations for ¢; = ¢, —¢; and ¢, = ¢, + ¢

1 9%, d¢y

Peoz 9z 0 (25a)
1 (92C_d acy (I+1), .
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It is clear that the only solution of the first equation satisfying
both the boundary condition at the inlet (—d;¢s/Pe+¢; = ¢y +¢1)
and at the outlet (d:¢; = 0) is ¢5(z) = és = ¢y + 1.

We simplify (25b) by introducing the functions:

_ 1 85d .
so that equation (25b) rewrites
feX0} 2
a—f_fﬂ(lﬂ)% @27

and the dimensionless electrical power per unit surface is

1
Popoe = AW / U dz
0

Pour 1
— Ay —&/ d(p—/  dz (28)
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In order to find the limit behaviours at small and large Sher-
wood, we proceed to some approximations. A first approxima-
tion takes into account that %j,; are close to unity and can be
expanded as:

1_ CsCq
Chy =1+ Ec,zlJ Ch— 6~ = (29)
This is because the reduced concentrations ¢, and ¢; are always

smaller than unity, therefore the approximation (29) is always
satisfied within 10%.

A second approximation involves the selectivity ¢:

CsC,
| _ GsCa

t~
2%

(30)

The above relation is established by using the change of variable
(55) and writing eq. (56) as

1
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v
In the operation condition of the exchanger, v cannot be very large
because this would require a very large Ay and a negative har-
vested power. Due to the fact that 4}, — 4; < 6, + ¢, the solution
in v of the above equation is thus v ~ —% /(¢}, + %;). Using the

expansion of eq. (29) for ¢,,%; we get the approximation (30).
Injecting (30) in (27) we get an expression for % :

X0} . 2 CsCy - 4%  ¢sly
o st )T (31
Sh (@ EsCy
%—*Z<£*Ez
from which the electrical power harvested writes
Pelec _ Sh [ Pou /1 CsCq
Ay 4, a0 o 4 @ 2

Low Sherwood. At low Sherwood number, the concentra-
tion difference drops rapidly downstream of the injection point,
and reaches a uniform profile ¢, when the exchange between
the nanochannels vanishes. This is obtained when the selectiv-
ity reaches the value 1 = —1, for which the r.h.s. of (27) vanishes.
According to the implicit equation (52,53) satisfied by ¢, one sees
that the condition r = —1 corresponds to:

&
Int = Ay (33)

o

. .
whereby we get the expression of ¢,

o O =1 34

c;=¢

475 Ay i
As the concentration profile is flat at the outlet, ¢ = ¢. Fur-
thermore, the lowest is Sherwood, the shortest is the nanochannel
portion where ¢, is significantly different from ¢;. Therefore in
the low Sherwood limit the electrical power writes:

Sh _ “ CsC
Pelee =AY 7(CD - Cd) -= (35)
4 4
where ¢p = ¢y — ¢ is the inlet flux. Because Sherwood is low,
the value of the electrical potential difference Ay, giving the
maximum value of the power is significantly smaller than 1, and
¢y ~ ¢sAy /2. In these conditions the exchanger behaves like a lin-
ear generator, and the maximum electrical power (35) is obtained
at AW = Shep /62 and has the value
Sh? ¢3
=@elec,max =~ _7[2) (36)
8 ¢
When the inlet salinity ratio is significant, we recover the be-
haviour in Sh2/8.

Large Sherwood. We start from equation (32) for the power.
As we expect to find a power growing with Sh at high Sherwood,
we neglect the 2nd term of the r.h.s, which is always bounded by
the value E% /4. Thus equation (32) is simplified in:

Sh, .
Polec = AWI (p" — (pout) (37)
Second, we take into account that at high Sherwood the diffu-
sive term in eq. (26) is negligible and convection dominates. This

leads to ¢ ~ ¢ .
Equation (31) is then used to find the variation of ¢ between
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the inlet and the outlet of the nanochannels. Injecting in (31) the
expression of % obtained from the developments of %,,%; (eq.
29): ~ .
U ~In C:—h SR Ay
C] 4
one get:

n& _m,/) (38)

We note that the variation of ¢ is not very large at high Sh, there-
fore ¢ remains more or less close to its initial value ¢ = ¢p. We
introduce the new function

_ Ay

Cs—Q)e

g Es= @)V @ =és(1—2e2Ve) (39)
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so that the previous equation writes :
—Ay de 4

— [lne —In(1— eiAu'e)} (40)
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The inlet value of ¢ is & = ¢2¥/2(1 + Cr) where Cr = ¢y /¢y, is
the inlet concentration ratio. For Cr > 10 the inlet value verifies
gine=AV « 1. We assume in the following, and verify at the end
of the calculation, that the condition ge 2¥ < 1 is met for all z
at the value Ay, for which the power is maximum. In these
conditions the rh.s. of (40) is dominated by its first term. For
the sake of simplicity, but this does not change the final result, we
neglect the 2nd term so that (40) writes:

de 28V

[ d 1
ne  cgShC (41)

which integrates in

power factor f at DuH=1
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Fig. 1 Points of the Fig.3 of the main paper complemented with asymp-
totic expressions 36 (dashed line) and 49 for Duy = 11 and for g, — 0
(thick line).

268V
 &4Sh

Ei[ln(£°“)] — Ei[In(e™)] = (42)
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where Ei is the exponential integral function. We then focus to
the enveloppe of the power curves when the concentration ratio
becomes very large, that is € = 0. This leads to the expression
for the power:

Ei[ln(e%)] = — 28 (43)
! T ESh
A out
Z, elec = ve (44)

Eilln(eo)]

The maximum power is obtained when d %, /d(Ay) =0. By
taking the derivative of equations (43):
dEi[In(g%")]
d(Ay)

and the derivative of (44), we get a relation for the value Ay, x
at which the power is maximum:

. 1 deour
= Ei[ln(e°)] = e d(Ay)

AVpar—1  Ing™ out
A = ~gau Eilln(e™)] (45)

Expanding the above equation to the first order in 1/In €% we get
the expression of Agy:

All/max —1 ~1 1 out

AWy = —1
T o Vmax = —Ine (46)

where terms in 1/(In£%%)? ~ 1 /(AW ) have been neglected. In-
jecting this value of Ay, in (43) with an expansion at the same
order we get:

e_AWrmw (1 1 ) _ 26AWHW
AWmax A‘I/max C_'SSh

Ei(—AWpar) ~

that writes, neglecting the terms in 1/(AW,. )%, as:
AV T2 (DAY +2) = €*EsSh 47)

The above equation solves as:

1
A = 3Wo (¢22,5h) (48)

1
r@elec,mw( = f = ZWO(eZEsSh) <W0(625sSh) - 2) (49)

where the function W, is the Lambert function, that is the recip-
rocal of xe*.

At high concentration ratio, the argument ¢;Sh becomes
Sh/Duyy.

Equation (49) describes the asymptotic expansion of the max-
imum electric power at Sh/Duy > 2 for an infinitely large ini-
tial salinity ratio Cr = ¢y /c = . We see on figure 3, that this
asymptotic expansion actually describes very well all salinity ra-
tios Cr > 10, up to the Sherwood value for which the (adimen-
sional) power saturates to the value .7 (Dug,Dur).
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Fig. 2 Simulation geometry and mesh configuration (left) and the re-
sulting velocity profile (right) calculated inside the microchannel section
in arbitrary units. In the simulation geometry (left) the red borders cor-
respond to zero velocity and the blue border corresponds to zero flux
condition.

4 Modelling the Elemental Exchanger using COM-
SOL Multiphysics

The 3D transport equations of the electrolyte in the microchan-
nels (Egs 3 of the article) were implemented in the COMSOL soft-
ware using the Equation-based modelling feature of COMSOL, and
more specifically the General Form Partial Differential Equations
which solves conservative equations of the form

V.I=s (50)

well-suited for a diffusion-convection equation.

As the convective velocity u(x,y)é, is invariant along the z-
direction, a velocity template ii(x,y) in the half-microchannel sec-
tion of with b (x-axis) and heigth 2a (y-axis) was first calcu-
lated separately by solving the Stokes equation V - Vii = Cre in
the section, and then rescaled so that [[ i(x,y)dxdy = 2ab. The
3D-transport equations were then solved in the microchannels for
various average velocity U and applied potential Ay, by using this
template multiplied by the targeted velocity U.

The mesh of the section was refined around the point corre-
sponding to the location of the nanoslit, as shown in Figure (2).
This 2D-mesh was further taken as the source of the 3D-domain
mesh obtained by sweeping it in the z-direction (see Figure 2).
It was checked that a mesh size around the nanoslit of less than
5.10~2b did not change the overall numerical results.

The 3D convection-diffusion equation (3) were solved on a
block of section 2ab extending from z = —0.05+ L up to L. The
additional block —0.05* L < z < 0 was added to the active part
z € [0,L] in order to allow upstream diffusion of the concentration
at low velocity. The equations were solved on this domain for the

Mesh after "Swept" Operation Mesh after "Distribution" Operation

Fig. 3

two normalized concentration fields ¢, ; = eHcy,; /|o|, writen as
- - U =
V. <*V5h,l + Bﬁéh’lez) =

(4 0)(-Ay -+ 6)8(x,) (5D

A unique diffusion coefficient D was assumed for anions and
cations, of value D = 10~ °m?/s.
The inlet boundary condition at z = 0.05L was a prescribed flux:

.U o
—Vén + BM(X,)’)Ch,l = —ii(x,y)¢n L

D
and the outlet boundary condition at z = L was a purely convec-
tive flux

V&, =0 z=L

The rh.s. was implemented using the Edge source feature of
COMSOL on an edge running from z =0 to z = L located at half-
heigth of the domain. For this purpose, the variables & and r (Eq.
(12) and (14)) had to be calculated on this edge:

_ 51 o Gn+1
éa—lnElJr‘Kh G ln%_’_1 (52)
tln?::+<€h7%:m[/f£’ (53)

Gy =\/1+8, (54
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(with 1 =¢ and § = 0). This was done using the Edge ODEs and
DAEs feature of COMSOL for solving algebraic equations. Note
that the algebraic equation 53 was not solved as such, but trans-
formed using the variable change:

16—t =% | Gt+E

v=—In

26—t ~ 2tanh(v) 2 (55)

and we solve the equation in v:
1
v<(‘€h7‘€l)(coth(v)f;)+(5h+‘€l> =Ay—-& (56)

admitting a single solution in v for all values of the r.h.s.

The mesh of the 3D domain (Figure 3) was constructed by
sweeping the mesh of the 2D section in the z-direction. It was
found that the resolution in z at the upstream extremity of the
edge source z = 0 was of particular importance, as concentration
polarization at this level is low and the region provides a high
contribution to the total current. An evolutive mesh size of 60
elements along the z-direction with the first element thickness
equal to 1073L was used, and further mesh refinement did not
change significantly the results.
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