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1 One-dimensional Poisson-Nernst-Planck equation
with ions of different diffusivities

We follow the derivation of section 3.1 of the main text, consid-
ering that the cations and anions have a different diffusion coef-
ficient respectively D+ and D−. In these conditions the transport
equations (1a) and (1b) of section 3.1 become:

J+ =−D+H
(

dc+

dx
+ c+

dψ

dx

)
(1a)

J− =−D−H
(

dc−

dx
− c−

dψ

dx

)
(1b)

while equation (1c) remains the same. Introducing the reduced
coordinates x̃ = x/W , the reduced concentrations c̃± = c±eH/|σ |,
the average concentration c̃= (c̃++ c̃−)/2, and the reduced fluxes
K+,− = eWJ±/|σ |D±, the 1D-PNP equations become:

eW
|σ |

(
J+

D+
+

J−

D−

)
= K++K− =−2

(
dc̃
dx̃

+
dψ

dx̃

)
(2a)

eW
|σ |

(
J+

D+
− J−

D−

)
= K+−K− =−

(
2c̃

dψ

dx̃

)
(2b)

These equations in K+,K−, c̃ and ψ are exactly the same as equa-
tions (2) of the main text, and therefore the modified selectivity
η = (K+−K−)/(K++K−) replaces t in equation (3a) while (3b)
is unchanged.

As boundary condition we assume the continuity of the non-
dimensional electrochemical potential of the anions and cations,
respectively lnc++ψ and lnc−−ψ, at x = 0 and x̃ = 1. With an
electrolyte concentration cho at the level of the nanoslit in the high
concentration nanoduct and a reduced potential ψh, the boundary
conditions at x̃ = 0 write:

ln c̃ho ±ψh = ln c̃±(0+)±ψ(0+)

c̃+(0+)c̃−(0+) = c̃2
ho ψh =

1
2

ln
c̃+(0+)
c̃−(0+)

+ψ(0+) (3)
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Together with the charge balance in the nanoslit (equation (1c) of
the main text) c̃+(0+)− c̃−(0+) =−2sgn(σ), the anion and cation
concentrations at entrance of the nanoslit are:

c̃±(0+) =∓sgn(σ)+
√

1+ c̃2
ho (4)

Thus the reduced electrolyte concentration Ch at the entrance of
the nanoslit is:

Ch =
c̃+(0+)+ c̃−(0+)

2
=
√

1+ c̃2
ho =

√
1+(c̃hoeH/σ)2

The same relation holds between Cℓ and c̃ℓo at the outlet of the
nanoslit x̃= 1−, and these relations constitute equation (4a) of the
main text. The relation between ψ(1−) and ψℓ is the analogous
of equation (3) at x̃ = 1, so that :

ψ(1−)−ψ(0+) = ψℓ−ψh +
1
2

ln
c̃+(0+)c̃−(1−)
c̃−(0+)c̃+(1−)

ψ(1−)−ψ(0+) = ∆ψ + ln
c̃ℓo(Ch − sgn(σ))

c̃ho(Cℓ− sgn(σ))
(5)

With ∆ψ = ψℓ −ψh and σ < 0 this is equation (4b) of the main
text.

The modified selectivity η = (K+ −K−)/(K+ +K−) replaces t
in equation (5a):

η ln
Ch −η

Cℓ−η
+Ch −Cℓ =−∆ψ +E (6)

while E is given by the unchanged equation (5b). Equation (6a)
becomes:

K± = (1±η)(−∆ψ +E ) (7)

from which one get the cations and anions fluxes and the electri-
cal current:

J± =
D±|σ |

eW
(1±η)(−∆ψ +E ) (8)

dI =
2D|σ |

W
(ξ +η)(−∆ψ +E ) (9)

Finally in order to recover the selectivity t one introduces the av-
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erage diffusion and diffusion contrast:

D =
D++D−

2
ξ =

D+−D−

D++D− (10)

t =
J+− J−

J++ J−
=

η +ξ

ηξ +1
(11)

When the ions diffusity are equal, ξ = 0 and t = η , and the ex-
pressions reduce to the one of the main text.

2 Optimizing the net power in the 1D-
approximation of the exchanger

Starting from eq (15) in the main text

Pnet =
kBT D|σ |

eWb

(
f − KDηeH2L2

2kBT |σ |Wb4 Sh2
)

(12)

we search for the exchanger parameters which maximize the net
extractable power density for fixed chemical conditions (i.e sur-
face charge, salinity, solutions viscosity, diffusion coefficient, tem-
perature). We optimize the geometric parameters by keeping con-
stant the ratio L/b = λ . Using the relation H = |σ |/(eCHDuH) we
introduce the fixed volume and power

V =
KDη |σ |
kBTeC2

H
P̃ =

kBT D|σ |
e

(13)

so that

Pnet =
P̃

Wb

(
f − V λ 2

2Wb2

(
Sh

DuH

)2
)

(14)

the power P̃ is equal to 16 pW for a surface charge |σ |= 0.64C/m2

at ambient temperature. The non-dimensional power factor f is
a function of non-dimensional numbers only, and therefore does
not depend on the specific value of b. There is thus an optimum
value of b corresponds to ∂Pnet/∂b = 0 at fixed f :

bopt =
Sh

DuH

√
3V λ 2

2W f
(15)

With this optimum value the net power becomes

Pnet =
2
√

2
3
√

3
P̃√

WV λ 2

DuH

Sh
f 3/2 (16)

which corresponds to a ratio between the produced electrical
power and the dissipated hydraulic power equal to 3, and con-
sequently a net power twice larger than the dissipated power.

The maximum net power is reached when f̃ 3/2DuH/Sh is max-
imum. This maximum is expected to be found at a value of Sher-
wood large enough (Sh/DuH > 5) so that the empirical master
law (14a) reduces to

f ≈ f
(

Sh
DuH

= y
)
=

1
4

W0(ye2)
(

W0((y+2)e2)−2
)

where W0 is the principal branch of the Lambert W function.
In this framework f̃ 3/2DuH/Sh is a function of the single vari-
able y = Sh/DuH . It has a maximum at Sh/DuH = 14.83 of value

f̃ 3/2DuH/Sh=0.1050, corresponding to f = 1.34. Consequently

bopt = 15.7λ

√
V

W
(17)

Pnet,max = 0.057
P̃

λ
√

WV
(18)

It is worth to note that the prefactor 15.7 and 0.057 come ex-
clusively from the mathematical properties of the master func-
tion (17), and are independant of the values of chemical, flow, or
geometrical parameters. Replacing V and P̃ by there respective
expression one gets

bopt = 15.7
λ

CH

√
KDη |σ |
WkBTe

(19)

Pnet,max = 0.057
CH

λ

√
(kBT )3D|σ |

WKηe
(20)

In this optimal configuration, the optimal average velocity Uopt

for nanoducts of square section (corresponding to K = 7.1) is

Uopt =
ShDHL
2Wb2

opt
=

1
2

√
D|σ |kBT
KηWe

It is worth noting that the only geometrical variable which im-
pacts this optimal velocity is W . The pressure difference ∆Popt

between the entry and the exit of one nanoduct of the elemental
converter is consequently

∆Popt = Kη
Uoptλ

bopt
= 0.0321 kBTCH (21)

It is a quite remarkable fact, that once the exchanger is designed
with a = b = bopt , the pressure needed to reach the maximum
net harvested pressure depends only on the osmotic pressure of
the high salinity solution, and not other parameters. At am-
bient temperature, for a square microchannel, D = 10−9 m2/s,
η = 10−3 Pas.s, |σ | = 0.64 C/m2, and sea water salt concentra-
tion CH = 0.6 M, V = 44 nm3 while for a reference concentration
C0 = 1 M, V0 = 16 nm3. The last volume is useful to be able to
estimate easily bopt and Pnmax for different solute concentration
as

bopt = 15.7
C0

CH
λ

√
V0

W
(22)

Pnmax = 0.057
CH

C0

P̃
λ
√

WV0
(23)

3 Asymptotic behaviour of Pelec at small and large
Sherwood

In the 1D-approximation of the Elemental Exchanger, the general
advection diffusion equations in the high and low concentrations
microchannels are give by equation (12) of the main text that we

2 | 1–6Journal Name, [year], [vol.],



rewrite as:

1
Pe

∂ 2c̄h

∂ z̄2 − ∂ c̄h

∂ z̄
− (1+ t)

Sh
(E −∆ψ) = 0 (24a)

1
Pe

∂ 2c̄l

∂ z̄2 − ∂ c̄l

∂ z̄
+

(1+ t)
Sh

(E −∆ψ) = 0 (24b)

with c̄h,l = ch,leH/|σ |, t and E given by eqs (4a, 5a) and (5b)
of the main text. The sum and difference leads to diffusion-
convection equations for c̄d = c̄h − c̄l and c̄s = c̄h + c̄l

1
Pe

∂ 2c̄s

∂ z̄2 − ∂ c̄s

∂ z̄
= 0 (25a)

1
Pe

∂ 2c̄d

∂ z̄2 − ∂ c̄d

∂ z̄
= 2

(1+ t)
Sh

(E −∆ψ) (25b)

It is clear that the only solution of the first equation satisfying
both the boundary condition at the inlet (−∂z̃c̄s/Pe+ c̄s = c̄H + c̄L)
and at the outlet (∂z̃c̄s = 0) is c̄s(z) = c̄S = c̄H + c̄L.

We simplify (25b) by introducing the functions:

ϕ = c̄d −
1
Pe

∂ c̄d

∂ z
U = E −∆ψ (26)

so that equation (25b) rewrites

∂ϕ

∂ z̄
=− 2

Sh
(1+ t)U (27)

and the dimensionless electrical power per unit surface is

Pelec = ∆ψ

∫ 1

0
tU dz̄

= ∆ψ

(
−Sh

2

∫
ϕout

ϕin

dϕ −
∫ 1

0
U dz̄

)
(28)

In order to find the limit behaviours at small and large Sher-
wood, we proceed to some approximations. A first approxima-
tion takes into account that Ch,l are close to unity and can be
expanded as:

Ch,l ≃ 1+
1
2

c̄2
h,l Ch −Cl ≃

c̄Sc̄d

2
(29)

This is because the reduced concentrations c̄h and c̄l are always
smaller than unity, therefore the approximation (29) is always
satisfied within 10%.

A second approximation involves the selectivity t:

t ∼ 1− c̄Sc̄d

2U
(30)

The above relation is established by using the change of variable
(55) and writing eq. (56) as

v
(
(Ch −Cl)(coth(v)− 1

v
)+Ch +Cl

)
= 2vt −Ch +Cl =−U

In the operation condition of the exchanger, v cannot be very large
because this would require a very large ∆ψ and a negative har-
vested power. Due to the fact that Ch −Cl ≪ Ch +Cl , the solution
in v of the above equation is thus v ≃ −U /(Ch +Cl). Using the

expansion of eq. (29) for Ch,Cl we get the approximation (30).
Injecting (30) in (27) we get an expression for U :

∂ϕ

∂ z̄
=− 2

Sh
(2− c̄Sc̄d

2U
)U =−4U

Sh
+

c̄Sc̄d

Sh
(31)

U =−Sh
4

(
∂ϕ

∂ z̄
− c̄Sc̄d

Sh

)
from which the electrical power harvested writes

Pelec

∆ψ
=−Sh

4

∫
ϕout

ϕin

dϕ −
∫ 1

0

c̄Sc̄d

4
dz (32)

Low Sherwood. At low Sherwood number, the concentra-
tion difference drops rapidly downstream of the injection point,
and reaches a uniform profile c̄∗d when the exchange between
the nanochannels vanishes. This is obtained when the selectiv-
ity reaches the value t =−1, for which the r.h.s. of (27) vanishes.
According to the implicit equation (52,53) satisfied by t, one sees
that the condition t =−1 corresponds to:

ln
c̄∗h
c̄∗l

= ∆ψ (33)

whereby we get the expression of c̄∗d

c̄∗d = c̄S
e∆ψ −1
e∆ψ +1

(34)

As the concentration profile is flat at the outlet, ϕout = c∗d . Fur-
thermore, the lowest is Sherwood, the shortest is the nanochannel
portion where c̄d is significantly different from c̄∗d . Therefore in
the low Sherwood limit the electrical power writes:

Pelec ≃ ∆ψ

(
Sh
4
(c̄D − c∗d)−

c̄Sc̄∗d
4

)
(35)

where c̄D = c̄H − c̄L is the inlet flux. Because Sherwood is low,
the value of the electrical potential difference ∆ψmax giving the
maximum value of the power is significantly smaller than 1, and
c̄∗d ≃ c̄S∆ψ/2. In these conditions the exchanger behaves like a lin-
ear generator, and the maximum electrical power (35) is obtained
at ∆ψmax = Shc̄D/c̄2

s and has the value

Pelec,max ≃
Sh2

8
c̄2

D
c̄2

S
(36)

When the inlet salinity ratio is significant, we recover the be-
haviour in Sh2/8.

Large Sherwood. We start from equation (32) for the power.
As we expect to find a power growing with Sh at high Sherwood,
we neglect the 2nd term of the r.h.s, which is always bounded by
the value c̄2

S/4. Thus equation (32) is simplified in:

Pelec ≃ ∆ψ
Sh
4
(ϕ in −ϕ

out) (37)

Second, we take into account that at high Sherwood the diffu-
sive term in eq. (26) is negligible and convection dominates. This
leads to ϕ ≃ c̄d .

Equation (31) is then used to find the variation of ϕ between
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the inlet and the outlet of the nanochannels. Injecting in (31) the
expression of U obtained from the developments of Ch,Cl (eq.
29):

U ≃ ln
c̄h

c̄l
+

c̄Sc̄d

4
−∆ψ

one get:

∂ϕ

∂ z
=− 4

Sh

(
ln

c̄h

c̄l
−∆ψ

)

≃− 4
Sh

(
ln

c̄S +ϕ

c̄S −ϕ
−∆ψ

)
(38)

We note that the variation of ϕ is not very large at high Sh, there-
fore ϕ remains more or less close to its initial value ϕ in = c̄D. We
introduce the new function

ε =
(c̄S −ϕ)e∆ψ

2c̄S
ϕ = c̄S(1−2e−∆ψ

ε) (39)

so that the previous equation writes :

−2c̄Se−∆ψ ∂ε

∂ z
=

4
Sh

[
lnε − ln(1− e−∆ψ

ε)
]

(40)

The inlet value of ε is ε in = e∆ψ/2(1+Cr) where Cr = c̄H/c̄L is
the inlet concentration ratio. For Cr > 10 the inlet value verifies
ε ine−∆ψ ≪ 1. We assume in the following, and verify at the end
of the calculation, that the condition εe−∆ψ ≪ 1 is met for all z
at the value ∆ψmax for which the power is maximum. In these
conditions the r.h.s. of (40) is dominated by its first term. For
the sake of simplicity, but this does not change the final result, we
neglect the 2nd term so that (40) writes:

dε

lnε
=−2e∆ψ

c̄SSh
dz (41)

which integrates in
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Cr=10 Cr   105
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Fig. 1 Points of the Fig.3 of the main paper complemented with asymp-
totic expressions 36 (dashed line) and 49 for DuH = 11 and for εin → 0
(thick line).

Ei[ln(εout)]−Ei[ln(ε in)] =−2e∆ψ

c̄SSh
(42)

where Ei is the exponential integral function. We then focus to
the enveloppe of the power curves when the concentration ratio
becomes very large, that is ε in = 0. This leads to the expression
for the power:

Ei[ln(εout)] =−2e∆ψ

c̄SSh
(43)

Pelec =
∆ψεout

−Ei[ln(εout)]
(44)

The maximum power is obtained when dPelec/d(∆ψ) = 0. By
taking the derivative of equations (43):

dEi[ln(εout)]

d(∆ψ)
= Ei[ln(εout)] =

1
lnεout

dεout

d(∆ψ)

and the derivative of (44), we get a relation for the value ∆ψmax

at which the power is maximum:

∆ψmax −1
∆ψmax

=
lnεout

εout Ei[ln(εout)] (45)

Expanding the above equation to the first order in 1/ lnεout we get
the expression of ∆ψmax:

∆ψmax −1
∆ψmax

≃ 1+
1

lnεout ∆ψmax =− lnε
out (46)

where terms in 1/(lnεout)2 ≃ 1/(∆ψmax)
2 have been neglected. In-

jecting this value of ∆ψmax in (43) with an expansion at the same
order we get:

Ei(−∆ψmax)≃−e−∆ψmax

∆ψmax

(
1− 1

∆ψmax

)
=−2e∆ψmax

c̄SSh

that writes, neglecting the terms in 1/(∆ψmax)
2, as:

e2∆ψmax+2(2∆ψmax +2) = e2c̄SSh (47)

The above equation solves as:

∆ψmax =
1
2

W0

(
e2c̄sSh

)
(48)

Pelec,max = f =
1
4

W0(e2c̄sSh)
(

W0(e2c̄sSh)−2
)

(49)

where the function W0 is the Lambert function, that is the recip-
rocal of xex.

At high concentration ratio, the argument c̄sSh becomes
Sh/DuH .

Equation (49) describes the asymptotic expansion of the max-
imum electric power at Sh/DuH ≥ 2 for an infinitely large ini-
tial salinity ratio Cr = cH/cL = ∞. We see on figure 3, that this
asymptotic expansion actually describes very well all salinity ra-
tios Cr > 10, up to the Sherwood value for which the (adimen-
sional) power saturates to the value F (DuH ,DuL).
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Fig. 2 Simulation geometry and mesh configuration (left) and the re-
sulting velocity profile (right) calculated inside the microchannel section
in arbitrary units. In the simulation geometry (left) the red borders cor-
respond to zero velocity and the blue border corresponds to zero flux
condition.

4 Modelling the Elemental Exchanger using COM-
SOL Multiphysics

The 3D transport equations of the electrolyte in the microchan-
nels (Eqs 3 of the article) were implemented in the COMSOL soft-
ware using the Equation-based modelling feature of COMSOL, and
more specifically the General Form Partial Differential Equations
which solves conservative equations of the form

∇⃗ · Γ⃗ = s (50)

well-suited for a diffusion-convection equation.

As the convective velocity u(x,y)⃗ez is invariant along the z-
direction, a velocity template ũ(x,y) in the half-microchannel sec-
tion of with b (x-axis) and heigth 2a (y-axis) was first calcu-
lated separately by solving the Stokes equation ∇⃗ · ∇⃗ũ = Cte in
the section, and then rescaled so that

s
ũ(x,y)dxdy = 2ab. The

3D-transport equations were then solved in the microchannels for
various average velocity U and applied potential ∆ψ, by using this
template multiplied by the targeted velocity U .

The mesh of the section was refined around the point corre-
sponding to the location of the nanoslit, as shown in Figure (2).
This 2D-mesh was further taken as the source of the 3D-domain
mesh obtained by sweeping it in the z-direction (see Figure 2).
It was checked that a mesh size around the nanoslit of less than
5.10−2b did not change the overall numerical results.

The 3D convection-diffusion equation (3) were solved on a
block of section 2ab extending from z = −0.05 ∗ L up to L. The
additional block −0.05 ∗ L ≤ z ≤ 0 was added to the active part
z ∈ [0,L] in order to allow upstream diffusion of the concentration
at low velocity. The equations were solved on this domain for the

Fig. 3

two normalized concentration fields c̄h,l = eHch,l/|σ |, writen as

∇⃗ ·
(
−∇⃗c̃h,l +

U
D

ũc̃h,l⃗ez

)
=

± H
W

(1+ t)(−∆ψ +E )δ (x,y) (51)

A unique diffusion coefficient D was assumed for anions and
cations, of value D = 10−9m2/s.

The inlet boundary condition at z= 0.05L was a prescribed flux:

−∇⃗c̃h,l +
U
D

ũ(x,y)c̃h,l =
U
D

ũ(x,y)c̃H,L

and the outlet boundary condition at z = L was a purely convec-
tive flux

−∇⃗c̃h,l = 0 z = L

The r.h.s. was implemented using the Edge source feature of
COMSOL on an edge running from z = 0 to z = L located at half-
heigth of the domain. For this purpose, the variables E and t (Eq.
(12) and (14)) had to be calculated on this edge:

E = ln
c̃h

c̃l
+Ch −Cl − ln

Ch +1
Cl +1

(52)

t ln
Ch − t
Cl − t

+Ch −Cl = ∆ψ −E (53)

Ch,l =
√

1+ c̃2
h,l (54)
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(with η = t and ξ = 0). This was done using the Edge ODEs and
DAEs feature of COMSOL for solving algebraic equations. Note
that the algebraic equation 53 was not solved as such, but trans-
formed using the variable change:

v =
1
2

ln
Ch − t
Cl − t

t =
Ch −Cl

2tanh(v)
+

Ch +Cl

2
(55)

and we solve the equation in v:

v
(
(Ch −Cl)(coth(v)− 1

v
)+Ch +Cl

)
= ∆ψ −E (56)

admitting a single solution in v for all values of the r.h.s.
The mesh of the 3D domain (Figure 3) was constructed by

sweeping the mesh of the 2D section in the z-direction. It was
found that the resolution in z at the upstream extremity of the
edge source z = 0 was of particular importance, as concentration
polarization at this level is low and the region provides a high
contribution to the total current. An evolutive mesh size of 60
elements along the z-direction with the first element thickness
equal to 10−3L was used, and further mesh refinement did not
change significantly the results.
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