
Micromixer driven by bubble-induced acoustic microstreaming for multi-ink 3D bioprinting

Mitsuyuki HIDAKA^a, Masaru KOJIMA^a, and Shinji SAKAl^{a*}

- a. Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, Email: sakai@cheng.es.osaka-u.ac.jp
- * Corresponding author: Professor Shinji Sakai, Email: sakai@cheng.es.osaka-u.ac.jp

Supporting information

Syringe pump
Acoustic micromixer
Microscope
Camera
Amplifier
Function generator

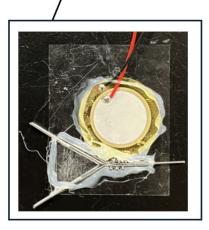


Figure S1: Overall view of experimental setup

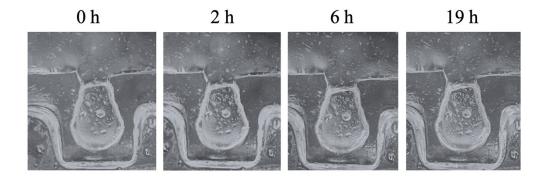


Figure S2: Bubble stability test. The channel of the nozzle was filled with 0.5 wt% SA solution for 19 h.

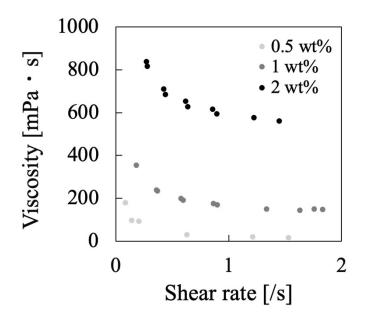


Figure S3: Viscosity of 0.5, 1 and 2 wt% of sodium alginate aqueous solutions

SA conc.	Surface tension	Density
[wt%]	[mN/m]	[g/cm ³]
0.5	15.2 ± 0.4	1.001
1.0	15.7 ± 0.4	1.006
2.0	21.2 ± 0.5	1.016

Table S1: Surface tension and density of 0.5,1.0 and 2.0 wt% SA solutions