Supplementary Information (SI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2024

Supplementary Figures

Rapid low-cost assembly of modular microvessel-on-a-chip with benchtop xurography

Shashwat S. Agarwal ^{1,*}, Marcos Cortes-Medina ^{2,*}, Jacob C. Holter ^{2,*}, Alex Avendano ², Joseph W. Tinapple ², Joseph M. Barlage ⁴, Miles M. Menyhert ³, Lotanna M. Onua ³, Jonathan W. Song ^{1,5,†}

1: Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210

2: Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210

3: Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210

4: Department of Biomedical Education and Anatomy, The Ohio State University, Columbus OH 43210

5: The Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210

*Contributed equally

†Correspondence to: song.1069@osu.edu

Supplementary Figure 1: Detailed fabrication steps to engineer T-junction microvessels or open blood vessel oriented perpendicular to close-ended blood or lymphatic vessel.

Supplementary Figure 2: A) Detailed fabrication steps to engineer two opposing close-ended vessels. B) Confocal Z-projection of intact cylindrical close-ended lymphatic microvessels lined with HDLECs, stained for F-actin (phalloidin, green) and nuclei counterstain (DAPI, blue). Scale bar is 200 µm.

Supplementary Figure 3: Detailed fabrication steps to engineer a single microvessel exposed to two distinct localized ECM microenvironments.