Supplementary Material to:

Real-time impedance-activated dielectrophoretic actuation for reconfigurable manipulation of single flowing particles

Alexis Lefevre,^{a,+} Cristian Brandi,^{b,+} Adele De Ninno,^c Filippo Ruggiero,^c Enrico Verona,^c Michaël Gauthier,^a Paolo Bisegna,^b Aude Bolopion^a and Federica Caselli^{b,*}

a. Université de Franche-Comté, CNRS, SUPMICROTECH, Institute FEMTO-ST, F25000 Besançon, France

b. Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy (caselli@ing.uniroma2.it)

c. Italian National Research Council – Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy

+ These authors contributed equally to this work.

Figure S1. Real part of the Clausius-Mossotti factor of the 8, 10, and 12 µm diameter polystyrene beads. Medium properties: conductivity $\sigma_m = 0.9$ S/m, relative permittivity $\varepsilon_m = 80$. Bead properties^{1,2}: surface conductivity $\kappa_s = 1.67$ nS (which amounts to a bead conductivity $\sigma_p = 4\kappa_s/d = 6.7 \times 10^{-4}$ S/m for the beads with diameter d = 10 µm), bead relative permittivity $\varepsilon_p = 2.5$.

	Zhong et al. ³	De Wagenaar et al. ⁴	Thomas et al. ⁵	Lipp et al. ⁶	Present work
Sensing approach	MIC	MIC	optical imaging	visual inspection	MIC
Actuation approach	focused travelling surface acoustic wave	DEP	DEP	DEP	DEP
Real-time processing and control approach	C-program running on a processor embedded in the impedance spectroscope	LabView program using USB connection between computer and impedance spectroscope	MATLAB program	manual	C-program running on a processor embedded in the impedance spectroscope
Particle pre-focusing mechanism	sheath flow focusing	DEP	DEP	none	none
Throughput	hundreds of particle/s	< 5 particle/s	up to 0.9 particle/s	~0.1 particle/s	~1 particle/s
Type of manipulation	two-way sorting (target particles are deviated)	two-way sorting (target particles are deviated)	two-way sorting (target particles are deviated) + demonstration of stream control through up to 5 channels	multi-way trajectory control (demonstrated 5-way)	multi-way trajectory control (demonstrated 3-way)
Reported application	enrichment of viable cells (cryopreserved primary PBMC samples)	sorting of beads from sperm cells	sorting of fluorescent particles/cells	formation of aggregates of controlled size and composition	particle position-swapping, size-based separation, sorting of a desired particle sequence

Table S1: Representative systems for selective manipulation of individual flowing particles/cells based on MIC-sensing and/or DEP-actuation.

References

- 1 C. Yu, J. Vykoukal, D. M. Vykoukal, J. A. Schwartz, L. Shi and P. R. C. Gascoyne, *Journal of Microelectromechanical Systems*, 2005, **14**, 480–487.
- 2 M. D. Vahey and J. Voldman, *Anal Chem*, 2009, **81**, 2446–2455.
- 3 J. Zhong, P. Li, M. Liang and Y. Ai, *Adv Mater Technol*, 2022, **7**, 2100906.
- B. de Wagenaar, S. Dekker, H. L. de Boer, J. G. Bomer, W. Olthuis, A. Van Den Berg and L. I. Segerink, *Lab Chip*, 2016, **16**, 1514–1522.
- 5 R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, H. Morgan and N. G. Green, *Electrophoresis*, 2019, **40**, 2718–2727.
- 6 C. Lipp, L. Koebel, A. Bertsch, M. Gauthier, A. Bolopion and P. Renaud, *Front Bioeng Biotechnol*, 2022, **10**, 910578.