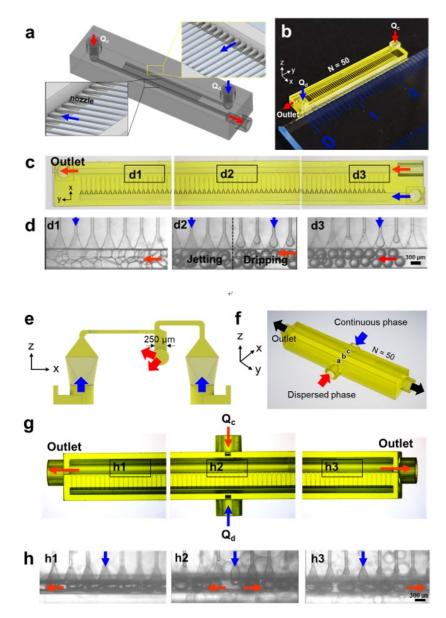
Electronic Supplementary Information

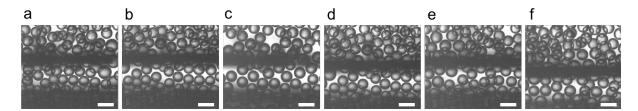
3D Printing of Monolithic Gravity-Assisted Step-Emulsification Device for

Scalable Production of High Viscosity Emulsion Droplets

Yoon-Ho Hwang^a, Je Hyun Lee^b, Taewoong Um^c, and Hyomin Lee^{*b}


- a. Department of Polymer Engineering, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea.
- b. Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- c. Mechatronics R&D Center, Samsung Electronics, Hwaseong, Gyeonggi-do 18448, South Korea

Keywords


Step-emulsification; 3D-printing; Emulsions; Microfluidics; Microparticle; Parallelization

Corresponding Author

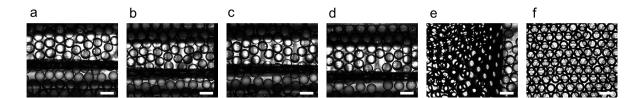

* Tel.: +82-54-279-2336. E-mail: hyomin@postech.ac.kr

Fig. S1. (a) Schematics illustrating the 3D-printed step-emulsification device with one horizontal outlet. (b) Photograph and the (c) magnified photograph of the device. (d) Optical micrograph showing the droplet formation behavior at different drop generator nozzles (d1-d3). (e) Schematics illustrating the 3D-printed step-emulsification device with two horizontal outlets. (f) Photograph and the (g) magnified photograph of the device. (h) Optical micrograph showing the droplet formation behavior at different drop generator nozzles (d1-d3). The continuous phase is 2 wt% Span80 in mineral oil and the dispersed phase is DI water.

Fig. S2. Series of micrographs showing the monodisperse W/O emulsion droplets produced from the 3D-PSD at different flow rates. The average diameter of the droplets (*d*) are (a) 193.5 μ m (CV = 3.2%), (b) 195.4 μ m (CV = 2.1%), (c) 198.4 μ m (CV = 2.6%), (d) 194.1 μ m (CV = 3.2%), (e) 195.8 μ m (CV = 2.5%), and (f) 193.4 μ m (CV = 2.9%), which are operated at ($Q_d = 5 \text{ mL h}^{-1}$, $Q_c = 50 \text{ mL h}^{-1}$), ($Q_d = 10 \text{ mL h}^{-1}$, $Q_c = 50 \text{ mL h}^{-1}$), ($Q_d = 20 \text{ mL h}^{-1}$), ($Q_d = 30 \text{ mL h}^{-1}$, $Q_c = 50 \text{ mL h}^{-1}$), ($Q_d = 50 \text{ mL h}^{-1}$), (

Fig. S3. Series of micrographs showing the monodisperse O/W emulsion droplets produced from the hydrophilically modified 3D-PSD at different flow rates. The average diameter of the droplets (*d*) are (a) 193.5 μ m (CV = 3.2%), (b) 195.4 μ m (CV = 2.1%), (c) 198.4 μ m (CV = 2.6%), (d) 194.1 μ m (CV = 3.2%), (e) 195.8 μ m (CV = 2.5%), and (f) 193.4 μ m (CV = 2.9%), which are operated at ($Q_d = 5 \text{ mL h}^{-1}$, $Q_c = 50 \text{ mL h}^{-1}$), ($Q_d = 10 \text{ mL h}^{-1}$, $Q_c = 50 \text{ mL h}^{-1}$), ($Q_d = 20 \text{ mL h}^{-1}$, $Q_c = 50 \text{ mL h}^{-1}$), ($Q_d = 40 \text{ mL h}^{-1}$, $Q_c = 50 \text{ mL h}^{-1}$), ($Q_d = 40 \text{ mL h}^{-1}$, $Q_c = 50 \text{ mL h}^{-1}$), ($Q_d =$

Notation	Description	Value
$ ho_{ m c}$	Density of the continuous phase	770 kg/m ³
$ ho_{ m d}$	Density of the dispersed phase	998 kg/m ³
$\mu_{\rm c}$	Dynamic viscosity of the continuous phase	3.0 x 10 ⁻³ Pa·s
$\mu_{ m d}$	Dynamic viscosity of the dispersed phase	8.9 x 10 ⁻⁴ Pa·s
^a σ	Interfacial tension between the continuous and dispersed phases	0.0050 N/m
g	Gravitational acceleration	9.8 m/s ²
θ_{dc}	Contact angle between the continuous and dispersed phases on the channel wall	150°

 Table S1. Physical properties and parameters used for the CFD simulation.