Supporting Information

A Potential Assay towards Rapid miRNA Detection from Skin Interstitial Fluid Using a Hydrogel Microneedle Patch Integrated with DNA Probe and Graphene Oxide

Hanjia Zheng, ^a Fatemeh Keyvani, ^a Sadegh Sadeghzadeh, ^a Dragos F. Mantaila, ^a Fasih A. Rahman, ^b Joe Quadrilatero, ^b Mahla Poudineh ^a*

^aDepartment of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

^bDepartment of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

*Email: mahla.poudineh@uwaterloo.ca

Figure S1. The Fluorescent spectra of (A) GO.pDNA210 and (B) GO.pDNA21 when tried with 10^{-9} , 10^{-10} , 10^{-11} , 10^{-12} , 10^{-13} , 10^{-14} and 0 M of miR-210 and of miR-21, respectively.

Figure S2. The calibration curve of (A)HMN-miR-210 sensor and (B)HMN-miR-21 sensor on agarose hydrogel.

Figure S3. The zoom-in *ex vivo* calibration curves for (A) HMN-miR-210 and (B) HMN-mi-R21 sensor with a concentration range from 0.25 nM to 50 nM.

Table S1. Sequence and modification of probe DNA (pDNA) and miRNA targets	

Name	Sequence (5' to 3')		
pDNA 210	Cy3-TCAGCCGCTGTCACACGCACAG-NH ₂		
pDNA 21	Cy3-TCAACATCAGTCTGATAAGCTA-NH ₂		
miR-210 (non-comp for pDNA 21)	CUGUGCGUGUGACAGCGGCUG ^{1,2}		
miR-21 (non-comp for pDNA 21)	UAGCUUAUCAGACUGAUGUUGA ^{1–3}		
miR-210-mis	CUGUGCGUGUGACAGCG A CUG		
miR-21-mis	UAGCUUAUCAGACUG G UGUUGA		

Table S2. Comparison of the recently reported HMN based miRNA sensor and HMN-miR sensor

Ref	<i>In vitro</i> target detection range	LOD of <i>in vitro</i> study	<i>Ex vivo</i> target detection range	LOD of <i>ex vivo</i> study
4	0.1 pM to 1 nM	159.09 fM	500 nM & 1 $^{\mu}$ M	n/a
5	10 pM to 25 nM	48 pM	500 nM to 500 pM	n/a
6	n/a	n/a	10–200 nM	6 nM
HMN-miR sensor	10 fM to 1 nM	2.28 pM (miR210) and 1.23 pM (miR21)	0.25 nM to 500 nM	2.49 nM (miR210) and 2.23 nM (miR21)

References

- 1 Y. Tang, X. Zhou, J. Ji, L. Chen, J. Cao, J. Luo and S. Zhang, *International Journal of Biological Markers*, 2015, **30**, e347–e358.
- 2 C. Kalogirou, J. Ellinger, G. Kristiansen, G. Hatzichristodoulou, H. Kübler, B. Kneitz, J. Busch and A. Fendler, *Transl Androl Urol*, 2020, **9**, 1314–1322.
- 3 H. T. Nguyen, S. E. O. Kacimi, T. L. Nguyen, K. H. Suman, R. Lemus-Martin, H. Saleem and D. N. Do, *Biology (Basel)*, 2021, **10**, 417.
- 4 Q. Yang, Y. Wang, T. Liu, C. Wu, J. Li, J. Cheng, W. Wei, F. Yang, L. Zhou, Y. Zhang, S. Yang and H. Dong, *ACS Nano*, 2022, **16**, 18366–18375.
- 5 Y. Qiao, J. Du, R. Ge, H. Lu, C. Wu, J. Li, S. Yang, S. Zada, H. Dong and X. Zhang, *Anal Chem*, 2022, **94**, 5538–5545.
- 6 D. Al Sulaiman, J. Y. H. Chang, N. R. Bennett, H. Topouzi, C. A. Higgins, D. J. Irvine and S. Ladame, *ACS Nano*, 2019, **13**, 9620–9628.