1	SUPPLEMENTAL INFORMATION		
2			
3	Retinal Organoid Chip: Engineering a Physiomimetic Oxygen Gradient for		
4	Optimizing Long Term Culture of Human Retinal Organoids		
5			
6	Emma Drabbe ^{1,2} , Daniel Pelaez ^{*1,2,3} , Ashutosh Agarwal ^{*1,3,4}		
7			
8	¹ Department of Biomedical Engineering, University of Miami, Coral Gables, FL		
9	² Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of		
10	Medicine, Miami, FL		
11	³ Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami		
12	⁴ Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami		
13			
14			
15			
16			
17			
18			
19	Corresponding Authors:		
20	Daniel Pelaez, Ph.D.		
21	1638 NW 10th Ave. Miami, FL 33136		
22	TEL: +1 (305) 482-4850, Email: dpelaez@miami.edu		
23	Ashutosh Agarwal, Ph.D.		
24	1951 NW 7th Ave #475 Miami FL 33136		
25	TEL: +1 (305) 243-8925, E-mail: A.agarwal2@miami.edu		

26

27 Supplementary Figure 1. A schematic of the human eye anatomy highlights the retina, which is
28 organized into distinct layers with various retinal cell phenotypes, situated between the hypoxic
29 vitreous cavity and the oxygenated choroid. This positioning leads to the establishment of a steep
30 oxygen gradient across the retinal tissue.

- 31 32
 - 32
- 33 Supplementary Figure 2. Dental Pulp Stem Cells (DPSC) reprogrammed for pluripotency were tested
- 34 on pluripotency markers SOX2, OCT4 and SSEA4 with immunofluorescence staining. Both original
- 35 DPSC derived iPSC line and a genetically modified iPSC line were found to be pluripotent.

36 37 Supplementary Figure 3. The workflow of RBPMS quantification from immunofluorescent images

38 using ImageJ, as described in the materials and methods.

Supplementary Table 1: Computational Modeling Parameters

Physics & Study Type	Laminar Flow; Stationary
riysies & Study Type	Transport of Diluted Species; Time-dependent
Oxygen Diffusion Coefficients	Water: $3.0 \cdot 10^{-9} \text{ m}^2/\text{s}$
oxygen Diffusion Coefficients	PFA: 4.56 • 10 ⁻⁸ m ² /s
Retinal Organoid Consumption Rates	Oxygen: -0.034091 mol/(m ³ ·s)
	Glucose: 1.0278E-11 kg/s
oundary Conditions Oxygon	$C_{water} = 0.245 \text{ mol/m}^3$
Boundary Conditions Oxygen	$C_{\text{sodium sulfate channel}} = 0 \text{ mol/m}^3$
Fluid Flow	$V = 50 \ \mu L/hour$

Supplementary Table 2: Retinal Organoid Culture Media

Neural Induction Media (50 mL)				
48.5 mL	Gibco™ DMEM:F12	Thermo Fisher Scientific #11320033		
0.5 mL	Non-Essential Amino Acids	VWR #16777-186		
0.5 mL	Gibco [™] GlutaMAX [™] Supplement	Thermo Fisher Scientific #35050061		
50 µL	Heparin Solution	Stemcell Tehcnologies # 07980		
0.5 mL	Gibco [™] N-2 Supplement	Thermo Fisher Scientific #17502048		
Retinal Differentiation Media (50 mL)				
24 mL	Gibco™ DMEM:F12	Thermo Fisher Scientific #11320033		
24 mL	Gibco™ DMEM	Thermo Fisher Scientific #11965092		
0.5 mL	Non-Essential Amino Acids	VWR #16777-186		
0.5 mL	Gibco [™] GlutaMAX [™] Supplement	Thermo Fisher Scientific #35050061		
1.0 mL	Gibco TM B27 TM Supplement	Thermo Fisher Scientific #12587010		
0.5 mL	Gibco [™] Antibiotic-Antimycotic	Thermo Fisher Scientific #15240096		