Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Supplementary Information for *Pervaporation-driven electrokinetic energy harvesting using poly(dimethylsiloxane) microfluidic chips*

Hrishikesh Pingulkar,^a Cédric Ayela,^b and Jean-Baptiste Salmon^a

1 Mask of the channel network

Fig. S1 Mask used to make the leaf channel network. N = 79 dead-end microchannels of width $w = 50 \ \mu m$ and length $L = 4 \ cm$ are connected to a single inlet. The centre-to-centre distance between adjacent channels is $d = 500 \ \mu m$ resulting in a total leaf width of $W = 3.9 \ cm$.

2 Approximations for the pervaporation-driven flow rate of a single channel

The relation:

$$F \simeq \frac{\pi}{\log(16H/(\pi w))},\tag{S1}$$

derived in another context¹ and only valid for $H \gg w \gg h$, provides nevertheless a rough approximation of the analytical solution given by Dollet et al.² for $H \gg 1$ mm, see Fig. 4. Eqn S1 shows the weak logarithmic dependence of the pervaporation-driven flow rate with the transverse dimensions of the channel as

early recognised for thick chips^{3,4}. For thinner chips, Dollet *et al.* provided the following approximation²:

$$F \simeq \frac{w}{\delta} + \frac{2}{\pi} \left[\ln \frac{(H+\delta)h}{\delta^2} + \frac{H}{\delta} \ln \frac{H+\delta}{h} \right], \quad (S2)$$

with $\delta = H - h$, valid for $\delta \le w$ and when *h* is not too small compared to *w*. As shown in Fig. 4, eqn S2 correctly approximates the analytical solution in our configuration even for $H \le 200 \ \mu$ m.

3 Numerical estimate of the pervaporation rate

To estimate the pervaporation rate *Q* for the channel network shown in Fig. S1, we performed numerical resolutions to calculate the concentration field C (kg/m³) of water within the PDMS leaf and the corresponding water mass flux ∇C , see Refs.^{5,6} for similar calculations. Fig. S2(a) shows the cross-section of the leaf which comprises N identical channels of rectangular cross-section $h \times w$. The problem is nearly invariant along the channels because $L \gg H$, thus justifying a 2D description. Because of the symmetries, we only solve the steady diffusion equation for C inside the dotted rectangle shown in Fig. S2(a). We then assume that the water concentration C in PDMS follows Henry's law and that the water diffusion coefficient D_w (m² s⁻¹) in the matrix is constant (reasonable approximations according to Refs.^{2,7}). With these assumptions, one can solve the dimensionless 2D diffusion equation $\Delta \tilde{c} = 0$, with $\tilde{c} = (C/C_{\text{sat}} - \text{RH})/(1 - \text{RH})$, C_{sat} (kg m⁻³) being the concentration of water at saturation in PDMS. The parameter \tilde{q} (m² s⁻¹) given in the main text is then $\tilde{q} = D_w C_{\text{sat}} / \rho_w$, with ρ_w $(kg m^{-3})$ the water density⁸. With this definition, boundary conditions are $\tilde{c} = 1$ at the channel walls and $\tilde{c} = 0$ at the air/PDMS interface, and no-flux on the other boundaries for reasons of symmetry and because glass is impermeable to water.

Fig. S2(b) shows the numerical resolution of the concentration field \tilde{c} for the case studied in the present work: h = 30, w = 50, H = 200, and $d = 500 \ \mu\text{m}$ (Matlab, pde toolbox). The water flux normal to the air/PDMS interface is numerically estimated from such concentration maps, and is used to finally estimate the overall pervaporation rate Q induced by the leaf by summing the N channels of length L. Fig. S3 shows the pervaporation-driven flow rate Q calculated using these numerical resolutions for a PDMS leaf of thickness $H = 200 \ \mu\text{m}$ and width $W = 3.9 \ \text{cm}$ as a function of the number of channels N it contains, and thus

^a CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 178 av. Schweitzer, 33600 Pessac, France.

^b Univ. Bordeaux, IMS, CNRS, Bordeaux INP, UMR 5218, 33607 Pessac, France.

Fig. S2 (a) Cross-section view of the PDMS leaf. The dotted rectangle shows the calculation domain of the diffusion equation governing the concentration of water in PDMS. Concentration field \tilde{c} estimated numerically for h = 30, w = 50, H = 200, and $d = 500 \ \mu m$ (the thin dark lines are isoconcentration lines).

for varying center-to-center distance *d* between adjacent channels (h = 30 and $w = 50 \ \mu$ m). *Q* is normalized by the limiting pervaporation-driven flow rate Q_{lim} corresponding to the high channel density regime $1/d \gg 1/H$ (strong coupling between the adjacent channels, see eqn 2). For $N \ll 100$, *Q* increases linearly with *N*, and saturates at Q_{lim} for $N \gg 100$. The experimental case studied in the present work (N = 79) is in between these two asymptotic regimes, and the numerical resolution gives in that case $Q = \alpha Q_{\text{lim}}$, with $\alpha \simeq 0.5$. We refer the reader to Ref.⁵ for a full description and in-depth discussion of this problem.

Fig. S3 Pervaporation-driven flow rate Q normalized by $Q_{\rm lim}$ (eqn 2) for a leaf of thickness $H=200~\mu{\rm m}$ and width $W=3.9~{\rm cm}$ as a function of the number N of channels it contains. The red line is $Q=NQ_i$ corresponding to the low density regime $(1/d\ll 1/H)$. The vertical dotted line indicates the experimental configuration studied experimentally for which $Q\simeq 0.5Q_{\rm lim}$.

Fig. S4 (a) Streaming potential V and (b) electrical power $\mathcal{P}_e = V^2/R_L$ as a function of the load resistance R_L measured for a pressure drop $\Delta P = 1$ bar across a colloid plug of length $L_p \simeq 3$ mm in a tube with inner radius $R_t = 0.5$ mm (hydraulic resistance $R_h \simeq 0.11$ bar min μ L⁻¹). The continous lines are fits by eqn 4 with $R_C = 4.1$ M Ω and $S_{\text{str}} = 155$ nA bar⁻¹.

Notes and references

- C. Loussert, F. Doumenc, J.-B. Salmon, V. S. Nikolayev and B. Guerrier, *Langmuir*, 2023, **39**, 11147.
- 2 B. Dollet, J.-F. Louf, M. Alonzo, K. Jensen and P. Marmottant, J. R. Soc. Interface, 2019, 16, 20180690.
- 3 E. Verneuil, A. Buguin and P. Silberzan, *Europhys. Lett.*, 2004, 68, 412.
- 4 G. C. Randall and P. S. Doyle, Proc. Natl. Acad. Sci. USA, 2005, 102, 10813.
- 5 X. Noblin, L. Mahadevan, I. A. Coomaraswamy, D. A. Weitz, N. M. Holbrook and M. A. Zwieniecki, *Proc. Natl. Acad. Sci.* USA, 2008, **105**, 9140.
- 6 N. Ziane, M. Guirardel, J. Leng and J.-B. Salmon, *Soft Matter*, 2015, **11**, 3637.
- 7 S. J. Harley, E. A. Glascoe and R. S. Maxwell, *J. Phys. Chem. B*, 2012, **116**, 14183.
- 8 P. Bacchin, J. Leng and J. B. Salmon, *Chem. Rev.*, 2022, **122**, 6938.