Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxxx

Supplementary Information for *Pervaporation-driven electrokinetic energy harvesting using poly(dimethylsiloxane) microfluidic chips*

Hrishikesh Pingulkar,*^a* Cédric Ayela,*^b* and Jean-Baptiste Salmon*^a*

1 Mask of the channel network

Fig. S1 Mask used to make the leaf channel network. $N = 79$ dead-end microchannels of width $w = 50 \mu$ m and length $L = 4$ cm are connected to a single inlet. The centre-to-centre distance between adjacent channels is $d = 500 \mu m$ resulting in a total leaf width of $W = 3.9 \text{ cm}$.

2 Approximations for the pervaporation-driven flow rate of a single channel

The relation:

$$
F \simeq \frac{\pi}{\log(16H/(\pi w))},\tag{S1}
$$

derived in another context^{[1](#page-1-0)} and only valid for $H \gg w \gg h$, provides nevertheless a rough approximation of the analytical solu-tion given by Dollet et al.^{[2](#page-1-1)} for $H \gg 1$ mm, see Fig. 4. Eqn [S1](#page-0-0) shows the weak logarithmic dependence of the pervaporationdriven flow rate with the transverse dimensions of the channel as early recognised for thick chips [3,](#page-1-2)[4](#page-1-3). For thinner chips, Dollet *et al.* provided the following approximation^{[2](#page-1-1)}:

$$
F \simeq \frac{w}{\delta} + \frac{2}{\pi} \left[\ln \frac{(H+\delta)h}{\delta^2} + \frac{H}{\delta} \ln \frac{H+\delta}{h} \right],
$$
 (S2)

with $\delta = H - h$, valid for $\delta \leq w$ and when *h* is not too small compared to *w*. As shown in Fig. 4, eqn [S2](#page-0-1) correctly approximates the analytical solution in our configuration even for $H \leq 200 \ \mu \text{m}$.

3 Numerical estimate of the pervaporation rate

To estimate the pervaporation rate *Q* for the channel network shown in Fig. [S1,](#page-0-2) we performed numerical resolutions to calculate the concentration field C (kg/m³) of water within the PDMS leaf and the corresponding water mass flux ∇*C*, see Refs. [5,](#page-1-4)[6](#page-1-5) for similar calculations. Fig. [S2\(](#page-1-6)a) shows the cross-section of the leaf which comprises *N* identical channels of rectangular cross-section $h \times w$. The problem is nearly invariant along the channels because $L \gg H$, thus justifying a 2D description. Because of the symmetries, we only solve the steady diffusion equation for *C* inside the dotted rectangle shown in Fig. [S2\(](#page-1-6)a). We then assume that the water concentration *C* in PDMS follows Henry's law and that the water diffusion coefficient D_w ($\text{m}^2 \, \text{s}^{-1}$) in the matrix is constant (reasonable approximations according to Refs.^{[2,](#page-1-1)[7](#page-1-7)}). With these assumptions, one can solve the dimensionless 2D diffusion equation $\Delta \tilde{c} = 0$, with $\tilde{c} = (C/C_{\text{sat}} - \text{RH})/(1 - \text{RH})$, C_{sat} (kg m⁻³) being the concentration of water at saturation in PDMS. The parameter \tilde{q} (m² s⁻¹) given in the main text is then $\tilde{q} = D_w C_{sat}/\rho_w$, with ρ_w (kg m⁻³) the water density^{[8](#page-1-8)}. With this definition, boundary conditions are $\tilde{c} = 1$ at the channel walls and $\tilde{c} = 0$ at the air/PDMS interface, and no-flux on the other boundaries for reasons of symmetry and because glass is impermeable to water.

Fig. [S2\(](#page-1-6)b) shows the numerical resolution of the concentration field \tilde{c} for the case studied in the present work: $h = 30$, $w = 50$, $H = 200$, and $d = 500 \mu$ m (Matlab, pde toolbox). The water flux normal to the air/PDMS interface is numerically estimated from such concentration maps, and is used to finally estimate the overall pervaporation rate *Q* induced by the leaf by summing the *N* channels of length *L*. Fig. [S3](#page-1-9) shows the pervaporation-driven flow rate *Q* calculated using these numerical resolutions for a PDMS leaf of thickness $H = 200 \mu m$ and width $W = 3.9 \text{ cm}$ as a function of the number of channels *N* it contains, and thus

^a CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 178 av. Schweitzer, 33600 Pessac, France.

^b Univ. Bordeaux, IMS, CNRS, Bordeaux INP, UMR 5218, 33607 Pessac, France.

Fig. S2 (a) Cross-section view of the PDMS leaf. The dotted rectangle shows the calculation domain of the diffusion equation governing the concentration of water in PDMS. Concentration field *c*˜ estimated numerically for $h = 30$, $w = 50$, $H = 200$, and $d = 500 \mu$ m (the thin dark lines are isoconcentration lines).

for varying center-to-center distance *d* between adjacent channels ($h = 30$ and $w = 50 \mu m$). *Q* is normalized by the limiting pervaporation-driven flow rate *Q*lim corresponding to the high channel density regime $1/d \gg 1/H$ (strong coupling between the adjacent channels, see eqn 2). For *N* ≪ 100, *Q* increases linearly with *N*, and saturates at Q_{lim} for $N \gg 100$. The experimental case studied in the present work $(N = 79)$ is in between these two asymptotic regimes, and the numerical resolution gives in that case $Q = \alpha Q_{\rm lim}$, with $\alpha \simeq 0.5$ $\alpha \simeq 0.5$. We refer the reader to Ref.⁵ for a full description and in-depth discussion of this problem.

Fig. S3 Pervaporation-driven flow rate *Q* normalized by *Q*lim (eqn 2) for a leaf of thickness $H = 200 \mu m$ and width $W = 3.9 \text{ cm}$ as a function of the number *N* of channels it contains. The red line is $Q = NQ_i$ corresponding to the low density regime $(1/d \ll 1/H)$. The vertical dotted line indicates the experimental configuration studied experimentally for which $Q \simeq 0.5Q_{\text{lim}}$.

Fig. S4 (a) Streaming potential *V* and (b) electrical power $\mathscr{P}_e = V^2/R_L$ as a function of the load resistance *R^L* measured for a pressure drop ∆*P* = 1 bar across a colloid plug of length *L^p* ≃ 3 mm in a tube with inner radius $R_t=0.5$ mm (hydraulic resistance $\dot{R_h}\simeq 0.11$ bar min $\mu\mathsf{L}^{-1}).$ The $\,$ continous lines are fits by eqn 4 with R_C $=$ 4.1 M Ω and $S_{\sf str}$ $=$ 155 nA bar $^{-1}.$

Notes and references

- 1 C. Loussert, F. Doumenc, J.-B. Salmon, V. S. Nikolayev and B. Guerrier, *Langmuir*, 2023, **39**, 11147.
- 2 B. Dollet, J.-F. Louf, M. Alonzo, K. Jensen and P. Marmottant, *J. R. Soc. Interface*, 2019, **16**, 20180690.
- 3 E. Verneuil, A. Buguin and P. Silberzan, *Europhys. Lett.*, 2004, **68**, 412.
- 4 G. C. Randall and P. S. Doyle, *Proc. Natl. Acad. Sci. USA*, 2005, **102**, 10813.
- 5 X. Noblin, L. Mahadevan, I. A. Coomaraswamy, D. A. Weitz, N. M. Holbrook and M. A. Zwieniecki, *Proc. Natl. Acad. Sci. USA*, 2008, **105**, 9140.
- 6 N. Ziane, M. Guirardel, J. Leng and J.-B. Salmon, *Soft Matter*, 2015, **11**, 3637.
- 7 S. J. Harley, E. A. Glascoe and R. S. Maxwell, *J. Phys. Chem. B*, 2012, **116**, 14183.
- 8 P. Bacchin, J. Leng and J. B. Salmon, *Chem. Rev.*, 2022, **122**, 6938.