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1 Mask of the channel network
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Fig. S1 Mask used to make the leaf channel network. N = 79 dead-end
microchannels of width w = 50 µm and length L = 4 cm are connected to
a single inlet. The centre-to-centre distance between adjacent channels
is d = 500 µm resulting in a total leaf width of W = 3.9 cm.

2 Approximations for the pervaporation-driven flow
rate of a single channel

The relation:

F ≃ π

log(16H/(πw))
, (S1)

derived in another context1 and only valid for H ≫ w ≫ h, pro-
vides nevertheless a rough approximation of the analytical solu-
tion given by Dollet et al.2 for H ≫ 1 mm, see Fig. 4. Eqn S1
shows the weak logarithmic dependence of the pervaporation-
driven flow rate with the transverse dimensions of the channel as
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early recognised for thick chips3,4. For thinner chips, Dollet et al.
provided the following approximation2:
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h

]
, (S2)

with δ = H −h, valid for δ ≤ w and when h is not too small com-
pared to w. As shown in Fig. 4, eqn S2 correctly approximates the
analytical solution in our configuration even for H ≤ 200 µm.

3 Numerical estimate of the pervaporation rate

To estimate the pervaporation rate Q for the channel network
shown in Fig. S1, we performed numerical resolutions to calcu-
late the concentration field C (kg/m3) of water within the PDMS
leaf and the corresponding water mass flux ∇C, see Refs.5,6 for
similar calculations. Fig. S2(a) shows the cross-section of the leaf
which comprises N identical channels of rectangular cross-section
h×w. The problem is nearly invariant along the channels because
L ≫ H, thus justifying a 2D description. Because of the symme-
tries, we only solve the steady diffusion equation for C inside the
dotted rectangle shown in Fig. S2(a). We then assume that the
water concentration C in PDMS follows Henry’s law and that the
water diffusion coefficient Dw (m2 s−1) in the matrix is constant
(reasonable approximations according to Refs.2,7). With these
assumptions, one can solve the dimensionless 2D diffusion equa-
tion ∆c̃ = 0, with c̃ = (C/Csat −RH)/(1−RH), Csat (kg m−3) being
the concentration of water at saturation in PDMS. The parameter
q̃ (m2 s−1) given in the main text is then q̃ = DwCsat/ρw, with ρw

(kg m−3) the water density8. With this definition, boundary con-
ditions are c̃ = 1 at the channel walls and c̃ = 0 at the air/PDMS
interface, and no-flux on the other boundaries for reasons of sym-
metry and because glass is impermeable to water.

Fig. S2(b) shows the numerical resolution of the concentration
field c̃ for the case studied in the present work: h = 30, w = 50,
H = 200, and d = 500 µm (Matlab, pde toolbox). The water flux
normal to the air/PDMS interface is numerically estimated from
such concentration maps, and is used to finally estimate the over-
all pervaporation rate Q induced by the leaf by summing the N
channels of length L. Fig. S3 shows the pervaporation-driven
flow rate Q calculated using these numerical resolutions for a
PDMS leaf of thickness H = 200 µm and width W = 3.9 cm as
a function of the number of channels N it contains, and thus
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Fig. S2 (a) Cross-section view of the PDMS leaf. The dotted rectan-
gle shows the calculation domain of the diffusion equation governing the
concentration of water in PDMS. Concentration field c̃ estimated numer-
ically for h = 30, w = 50, H = 200, and d = 500 µm (the thin dark lines
are isoconcentration lines).

for varying center-to-center distance d between adjacent chan-
nels (h = 30 and w = 50 µm). Q is normalized by the limiting
pervaporation-driven flow rate Qlim corresponding to the high
channel density regime 1/d ≫ 1/H (strong coupling between the
adjacent channels, see eqn 2). For N ≪ 100, Q increases linearly
with N, and saturates at Qlim for N ≫ 100. The experimental
case studied in the present work (N = 79) is in between these two
asymptotic regimes, and the numerical resolution gives in that
case Q = αQlim, with α ≃ 0.5. We refer the reader to Ref.5 for a
full description and in-depth discussion of this problem.
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Fig. S3 Pervaporation-driven flow rate Q normalized by Qlim (eqn 2) for
a leaf of thickness H = 200 µm and width W = 3.9 cm as a function of
the number N of channels it contains. The red line is Q = NQi corre-
sponding to the low density regime (1/d ≪ 1/H). The vertical dotted
line indicates the experimental configuration studied experimentally for
which Q ≃ 0.5Qlim.
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Fig. S4 (a) Streaming potential V and (b) electrical power Pe =V 2/RL
as a function of the load resistance RL measured for a pressure drop
∆P = 1 bar across a colloid plug of length Lp ≃ 3 mm in a tube with inner
radius Rt = 0.5 mm (hydraulic resistance Rh ≃ 0.11 bar min µL−1). The
continous lines are fits by eqn 4 with RC = 4.1 MΩ and Sstr = 155 nA bar−1.
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