Supplementary Material (ESI) for Lab on a Chip

## Selective Adsorption of Unmethylated DNA on ZnO Nanowires for

## Separation of Methylated DNA

Marina Musa,\*<sup>‡a</sup> Zetao Zhu,\*<sup>b</sup> Hiromi Takahashi,<sup>a</sup> Wataru Shinoda,<sup>c</sup> Yoshinobu Baba\*<sup>ade</sup> and Takao Yasui\*<sup>bd</sup>

<sup>a</sup>Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;

<sup>b</sup>Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta

4259, Midori-ku, Yokohama 226-8501, Japan

<sup>c</sup>Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-

8530, Japan

<sup>d</sup>Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya

University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

eInstitute of Quantum Life Science, National Institutes for Quantum Science and

Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.

- \*M. Musa E-mail: marina-musa@g.ecc.u-tokyo.ac.jp;
- \*Z. Zhu Phone: +81-45-924-5520; E-mail: zhu.z.ag@m.titech.ac.jp;
- \*Y. Baba Phone: +81-52-789-4664; E-mail: babaymtt@chembio.nagoya-u.ac.jp;
- \*T. Yasui Phone: +81-45-924-5520; E-mail: yasuit@bio.titech.ac.jp.

<sup>‡</sup>Current address: Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

<sup>\*</sup>Correspondence to:

- Figure S1 Fabrication process of the microchannel mold and PDMS microchannel.
- Figure S2 Fabrication process of the nanowire-based microfluidic device.
- Figure S3 Characterization of the ZnO nanowires embedded in the microfluidic device.
- Figure S4 Contact angles of the ZnO film and ZnO nanowires.
- *Figure S5* FTIR spectra of partially methylated DNAs with different methylation positions before and after being captured on ZnO nanowires.
- *Figure S6* Probability distribution of the unmethylated, methylated, and partially methylated DNAs with different methylation positions expressed against the distance from the ZnO surface.
- *Figure S7* Profile map of capture efficiencies of unmethylated, methylated, and partially methylated DNAs with different methylation levels and positions obtained using ZnO nanowire-based devices.

Figure S8 Capture efficiencies of ssDNA and dsDNA with different methylation levels.

*Figure S9* Capture efficiencies of the involved polynucleotides, PolyA, PolyT, PolyC, and PolyG.

*Table S1* Zeta potentials of the DNA, ZnO nanowires, and ZnO nanowires covered by a ZnO layer.

- *Table S2* Peak positions extracted from FTIR spectra.
- *Table S3* Oligonucleotide sequences used in this study.

*Table S4* Comparison table of microfluidic MeDIP-seq and our method.

*Movie S1* The adsorption process of unmethylated DNA (CCCCC) on ZnO surface (MD simulation), related to Figure 2

*Movie S2* The adsorption process of methylated DNA (CmCmCmCmCm) on ZnO surface (MD simulation), related to Figure 2



Figure. S1. Fabrication process of the microchannel mold and PDMS microchannel.



Figure. S2. Fabrication process of the nanowire-based microfluidic device.



**Figure. S3.** Characterization of the ZnO nanowires embedded in the microfluidic device. (a) Image of the microfluidic device. (b) Top and cross-sectional views of ZnO nanowires embedded in the device. (c) Frequency distributions of the length and diameter of the nanowires.



Figure. S4. Contact angles of the ZnO film and ZnO nanowires.



**Figure. S5.** FTIR spectra of partially methylated DNAs with different methylation positions before and after being captured on ZnO nanowires. (a) CmCCCmCm and ZnO-CmCCCmCm. (b) CmCCmCCCm and ZnO-CmCCCmCCm. (c) CCmCmCmC and ZnO-CmCmCmC. (d) CmCmCmCC and ZnO-CmCmCmCC.



**Figure. S6.** Probability distributions of the unmethylated, methylated, and partially methylated DNAs with different methylation positions expressed against the distance from the ZnO surface. A higher probability distribution peak of unmethylated DNAs on adjacent regions of the ZnO surface was observed than the peaks of partially and fully methylated DNAs. Compared to the sharp peak in the distributions of unmethylated and fully methylated DNAs, the partially methylated DNAs exhibited a peak on the further regions of the ZnO surface, similar to the distribution peak of the fully methylated DNAs.



**Figure. S7.** Profile map of capture efficiencies of unmethylated, methylated, and partially methylated DNAs with different methylation levels and positions obtained using ZnO nanowire-based device.



**Figure. S8.** Type or paste legend here. Capture efficiencies of ssDNA and dsDNA with different methylation levels. (a) Low concentration:  $1 \text{ ng/}\mu\text{L}$ . (b) High concentration: 50 ng/ $\mu$ L. The influence of DNA chain structure, whether it was single or double-stranded, on capture efficiency was investigated. The results showed that the capture efficiency of dsDNA was inferior to that of ssDNA.



**Figure. S9.** Capture efficiencies of the involved polynucleotides, polyA, polyT, polyC, and polyG. Capture efficiencies of polynucleotides associated with polyA, polyT, polyC, and polyG were analyzed to validate the influence of polynucleotide composition on capture efficiency.

| Substances                      | Zeta potential (mV) |
|---------------------------------|---------------------|
| DNA                             | -50.8               |
| ZnO nanowire                    | 8.54                |
| ZnO/ZnO nanowire<br>(after ALD) | 23.78               |

**Table S1.** Zeta potentials of the DNA, ZnO nanowires, and ZnO nanowires covered by an ALD ZnO layer.

The zeta potential increased from 8.54 mV to 23.78 mV after ALD of the ZnO layer, which facilitates its adsorption capability for the negatively charged DNA.

| Functional groups | FTIR wavenumber (cm <sup>-1</sup> ) |      |      |      |
|-------------------|-------------------------------------|------|------|------|
|                   | C=O                                 | N-H  | C=N  | C-N  |
| CCCCC             | 1718                                | 1624 | 1540 | 1448 |
| ZnO-CCCCC         | 1724                                | 1617 | 1528 | 1417 |
| CmCmCmCmCm        | 1718                                | 1623 | 1521 | 1448 |
| ZnO-              | 1717                                | 1617 | 1521 | 1448 |
| CmCmCmCmCm        | 1/1/                                |      |      |      |
| CmCmCmCC          | 1724                                | 1623 | 1517 | 1448 |
| ZnO-CmCmCmCC      | 1724                                | 1614 | 1523 | 1449 |
| CmCCCmCm          | 1717                                | 1623 | 1520 | 1448 |
| ZnO-CmCCCmCm      | 1719                                | 1614 | 1533 | 1448 |
| CmCCmCCm          | 1717                                | 1616 | 1527 | 1448 |
| ZnO-CmCCmCCm      | 1717                                | 1612 | 1530 | 1448 |
| CCmCmCmC          | 1723                                | 1609 | 1522 | 1448 |
| Poly-CCmCmCmC     | 1724                                | 1604 | 1522 | 1449 |

**Table S2.** Peak positions extracted from FTIR spectra of unmethylated, methylated, and partially methylated DNAs with different methylation positions before and after being captured on ZnO nanowires.

| Oligonucleotides                         | Sequence (5' – 3')                                                                                                   |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 0% CpG methylation<br>(0M)               | ATACGCGTACTGCGGTCGCGATCGCGCTCTCGCGC<br>TGACGGTGCGTCGCGCGTACGCGATT                                                    |
| 6.3% CpG methylation (1M)                | ATACmGCGTACTGCGGTCGCGATCGCGCTCTCGC<br>GCTGACGGTGCGTCGCGCGTACGCGATT                                                   |
| 12.5%CpG methylation<br>(2D)             | ATACmGCGTACTGCGGTCGCGATCGCGCTCTCGC<br>GCTGACGGTGCGTCGCGCGTACGCmGATT                                                  |
| 12.5%CpG methylation<br>(2C)             | ATACGCGTACTGCGGTCGCGATCGCGCTCTCmGC<br>mGCTGACGGTGCGTCGCGCGTACGCGATT                                                  |
| 12.5%CpG methylation<br>(2E)             | ATACmGCmGTACTGCGGTCGCGATCGCGCTCTCG<br>CGCTGACGGTGCGTCGCGCGTACGCGATT                                                  |
| 25% CpG methylation (4D)                 | ATACmGCGTACTGCGGTCGCGATCmGCGCTCTCG<br>CGCTGACGGTGCmGTCGCGCGTACGCmGATT                                                |
| 25% CpG methylation<br>(4C)              | ATACGCGTACTGCGGTCGCGATCmGCmGCTCTCm<br>GCmGCTGACGGTGCGTCGCGCGTACGCGATT                                                |
| 25% CpG methylation<br>(4E)              | ATACGCGTACTGCGGTCGCGATCGCGCTCTCGCGC<br>TGACGGTGCGTCG <b>CmGCmGTACmGCm</b> GATT                                       |
| 25% CpG methylation<br>(4LR)             | ATACmGCmGTACTGCGGTCGCGATCGCGCTCTCG<br>CGCTGACGGTGCGTCGCGCGTACmGCmGATT                                                |
| 25% CpG methylation<br>(4M-80)           | ATACmGCGTACTGCGGTCGCGATCmGCGCTCTCG<br>CGCTGACGGTGATGGACTTGACTAAGGTTGCmGT<br>CGCGCGTACGCmGATT                         |
| 25% CpG methylation<br>(4M-100)          | ATACmGCGTACTGCGGTCGCGATCmGCGCTCTCG<br>CGCTGACGGTGATGGACTTGACTAAGGTAGGTTA<br>TGACAGGCTTAGAATGCmGTCGCGCGTACGCmGA<br>TT |
| 50% CpG methylation (8M)                 | ATACmGCGTACTGCmGGTCmGCGATCmGCGCTC<br>TCGCmGCTGACGGTGCmGTCGCGCmGTACGCmG<br>ATT                                        |
| 100% CpG methylation<br>(16M)            | ATACmGCmGTACTGCmGGTCmGCmGATCmGCm<br>GCTCTCmGCmGCTGACmGGTGCmGTCmGCmGC<br>mGTACmGCmGATT                                |
| Unmethylated DNA<br>(mixture experiment) | ATCTCGAACTTCTGACCTCAGGTGATCCTCCTGTC<br>TTGGCCTCCCAAAGTGCTGCGATTAC                                                    |
| 20CG                                     | CGCGCGCGCGCGCGCGCGCG                                                                                                 |
| 20MCG                                    | CmGCmGCmGCmGCmGCmGCmGCmGCmG                                                                                          |

 Table S3. Oligonucleotide sequences used in this study.

| 1                        |                                     | 1                               |
|--------------------------|-------------------------------------|---------------------------------|
| Feature                  | Microfluidic MeDIP-seq <sup>1</sup> | Our Method                      |
| Target Material          | Genomic DNA                         | Methylated oligonucleotide DNA  |
|                          | (~100–500 bp fragments)             | (~60 bp fragments)              |
| Sensitivity              | 0.5 ng DNA input                    | ~1 ng/µL DNA input              |
| Focus                    | Genome-wide methylation analysis    | Targeted biomarker analysis     |
| Applications             | Cancer development studies,         | Early disease diagnosis,        |
|                          | tissue-level epigenetics            | liquid biopsy analysis          |
| <b>Output Complexity</b> | High                                | Low                             |
|                          | (genome-wide data)                  | (focused on actionable regions) |

**Table S4** Comparison Table of microfluidic MeDIP-seq and our method

Reference:

1 Y. Zhu, Z. Cao, C. Lu, Analyst, 2019, 144:1904–1915