TapeTech Microfluidic Connectors: Adhesive Tape-Enabled Solution for Organ-on-a-Chip System Integration

Terry Ching^{1,2,3}, Abraham C.I. van Steen^{1,2,3}, Delaney Gray-Scherr^{1,2,3}, Jessica L. Teo^{1,2,3}, Anish Vasan^{1,2}, Joshua Jeon^{1,2}, Jessica Shah⁴, Aayush Patel^{1,2}, Amy E. Stoddard^{1,2,3,4}, Jennifer L. Bays^{1,2,3}, Jeroen Eyckmans^{1,2,3}, Christopher S. Chen^{1,2,3,*}

¹Biological Design Center, Boston University, Boston, MA 02215, USA

²Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA

³Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA

⁴Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

*Corresponding author: chencs@bu.edu

Supplementary documents

Supplementary Figure 1. Durability test of adhesive performance on various substrates A) Cross-sectional illustration of the durability test performed on silicon, glass, and paper substrates. B) Heatmap showing the survivability (n = 6) of samples subjected to a five-step pressure ramp profile (40 kPa to 200 kPa) for varying substrate materials.

Supplementary Figure 2. Exploded-view of TapeTech assembly designed for interfacing with the ibidi 6-channel chip. Tape and PET film layers are fabricated using xurography (CAMEO Silhouette 4, Silhouette America, Utah, USA). PMMA layer was fabricated using laser cut machine.

Supplementary Figure 3. A) Dimension of TapeTech assembly ribbon designed for interfacing with the ibidi 6-channel chip. **B)** Dimension of ibidi 6- channel chip (μ -Slide VI – Flat)

Supplementary Figure 4. Exploded-view of TapeTech assembly designed for interfacing with the Emulate lung chip. Tape and PET film layers are fabricated using xurography (CAMEO Silhouette 4, Silhouette America, Utah, USA). PMMA layer was fabricated using laser cut machine.

Supplementary Figure 5. A) Dimension of TapeTech assembly ribbon designed for interfacing with the Emulate lung chip. B) Dimension of Emulate Lung Chip. C) 3D illustration highlighting the chambers in the Emulate lung chip, accompanied by cross-sectional views of the channels in ii) a relaxed state and iii) a stretched state. Reproduced with permission from T. Ching et al., Trends Pharmacol. Sci., 42(9), 715-728.

Supplementary Figure 6. Exploded-view of TapeTech assembly designed for interfacing with a 3D-printed fluidic chip (Formlabs). Tape and PET film layers are fabricated using xurography (CAMEO Silhouette 4, Silhouette America, Utah, USA). PMMA layer was fabricated using laser cut machine.

Supplementary Figure 7. A) Dimensions of TapeTech assembly ribbon designed for interfacing with a 3D-printed fluidic chip (Formlabs). **B)** Dimensions of the 3D-printed fluidic chip.

Supplementary Figure 8. Exploded-view of the TapeTech fitting that adheres to the TapeTech ribbon. A 5 mm PMMA sheet was laser cut, and the holes were threaded using a 1/4-28 straight flute tap. Commercially available 1/16" hose barb to 1/4-28 threaded adapters were screwed into the PMMA sheet to create a watertight seal. The tape was precisely cut to size using xurography and adhered to the fitting assembly, integrating with the TapeTech ribbon to their respective channel.

Supplementary Figure 9. Representative live/dead assay fluorescence image of normal human lung fibroblasts cultured for 3 days in a 6-well plate, with a 30 mm by 10 mm tape submerged in the cell culture medium to assess potential toxicity

Supplementary Figure 10. Nile red, a low-molecular-weight hydrophobic fluorophore, was used to assess the material absorption. Nile red solution was perfused into devices and petri dishes made from different materials and incubated for 3 days. After 3 days, the devices and petri dishes were washed three times with PBS. A) Micrograph of the fluorescence signal in the petri dish after washing. B) Micrograph of the fluorescence signal in the PDMS device after washing. C) Micrograph of the fluorescence signal in the tape-based fluidic device after washing.

Gene name	Forward (5' -> 3')	Reverse (5' -> 3')
CXCR4	CATCAGTCTGGACCGCTACC	CCAGACGCCAACATAGACCA
MMP2	TACAGGATCATTGGCTACACACC	GGTCACATCGCTCCAGACT
KLF4	AGATGGGGTCTGTGACTGGA	CCTCCCCCAACTCACGGATA
eNOS	GAACCTGTGTGACCCTCACC	TGGCTAGCTGGTAACTGTGC
HES1	CCAAGTGTGCTGGGGGAAGTA	CACCTCGGTATTAACGCCCT
MMP1	AAAATTACACGCCAGATTTGCC	GGTGTGACATTACTCCAGAGTTG
VCAM1	CTCCTGAGCTTCTCGTGCTC	TGACCCCTTCATGTTGGCTT
ICAM1	ACCATGGAGCCAATTTCTCG	GCGCCGGAAAGCTGTAGATG
CTGF	CGAGGAGTGGGTGTGTGA	TTCCAGTCGGTAAGCCGC
CCL2	CAGCCAGATGCAATCAATGCC	TGGAATCCTGAACCCACTTCT
GAPDH	ACAACTTTGGTATCGTGGAAGG	GCCATCACGCCACAGTTTC

Su	pr	olementary	Table	1.	Primer sec	quences i	for c	PCR
		•/						

Supplementary Table 2. The cost of fabricating the TapeTech ribbon for the 6-channel ibidi chip was calculated based on the material expenses. The unit cost of double-sided tape and PET films is $45.48/m^2$ and $10.59/m^2$, respectively.

Item	Area [m ²]	Cost [\$]	Notes
Total Tape employed [m ²]	0.010016	\$0.46	https://www.amazon.com/3M-9495LE-
			Double-Coated-
			Polyester/dp/B007Y7DC20/ref=sr_1_4?gcli
			d=Cj0KCQjwz96WBhC8ARIsAATR252Y
			cAEDnrSimdEe8B_Tv9Jcq34pj2Xd_nvvdo
			N8gFzxXdXnp1ZWDUUaAto7EALw_wc
			B&hvadid=268164105083&hvdev=c&hvlo
			cphy=9002000&hvnetw=g&hvqmt=e&hvra
			nd=14180290249352038269&hvtargid=kw
			<u>d-</u>
			295838783959&hydadcr=6982_9806415&
			keywords=3m+9495le&qid=1658333916&s
			<u>r=8-4</u>
Total PET film employed [m ²]	0.016216	\$0.17	https://catalog.cshyde.com/item/films/mylar
			-polyester-pet-film/48-4f-oc
Total Cost		\$0.63	Fabrication of TapeTech ribbon Fig. 2C