ARTICLE

Supplementary information

Exploring Response Time and Synaptic Plasticity in P3HT Ion-Gated Transistors for Neuromorphic Computing: Impact of P3HT Molecular Weight and Film Thickness

Ramin	Karimi	Azari,*ª	Zhaojing	Gaoª,	Alexandre	Carrière ^a	and	Clara	Santato	* a
-------	--------	----------	----------	-------	-----------	-----------------------	-----	-------	---------	------------

MW	V _{gs} scan rate	ON/OFF	V _{th}	Mobility	Charge carrier
	(mV s ⁻¹)		(V)	$(cm^2 V^{-1} s^{-1})$	density (cm ⁻²)
	25	$(0.8 \pm 1.6) \times$	-0.32 ± 0.03	0.20 ± 0.03	$(1.6 \pm 0.2) \times$
Low		10 ³			1015
	50	$(2.1 \pm 0.1) \times$	-0.34 ± 0.03	0.26 ± 0.09	$(1.2 \pm 0.1) \times$
		103			1015
	100	$(1.6 \pm 0.2) \times$	-0.34 ± 0.05	0.33 ± 0.02	$(0.9 \pm 0.3) \times$
		10 ³			1015
	25	$(2.1 \pm 0.7) \times$	-0.44 ± 0.02	0.16 ± 0.02	(2.0 ± 0.8) ×
Intermediate		10 ³			1015
	50	$(3.0 \pm 0.5) \times$	-0.44 ± 0.04	0.19 ± 0.05	$(1.6 \pm 0.5) \times$
		103			1015
	100	$(2.0 \pm 0.3) \times$	-0.44 ± 0.01	0.25 ± 0.04	$(1.2 \pm 0.2) \times$
		10 ³			1015
	25	$(3.5 \pm 0.5) \times$	-0.45 ± 0.2	0.13 ± 0.09	$(2.3 \pm 0.09) \times$
High		10 ³			1015
	50	$(3.0 \pm 0.1) \times$	-0.45 ± 0.01	0.16 ± 0.06	$(1.9 \pm 0.3) \times$
		10 ³			1015
	100	$(1.9 \pm 0.3) \times$	-0.45 ± 0.01	0.22 ± 0.01	$(1.4 \pm 0.2) \times$
		103			1015

Table S1. Figures of merit for different MWs [EMIM][TFSI]-gated P3HT transistors at different V_{gs} scan rates (100, 50, and 25 m V s⁻¹).

The threshold voltage, V_{th} , was determined by linearly extrapolating the I_{ds} - V_{gs} curve within the linear regime. The ON/OFF ratio, derived from the transfer curves, represents the ratio of I_{ds} at a constant V_{gs} in the ON and OFF states (I_{on}/I_{off}).¹

We calculated the charge carrier density (ρ , cm²), and then the mobility (μ , cm²V⁻¹s⁻¹), from the transfer characteristics with V_{gs} sweeping rates of 25, 50, and 100 mVs⁻¹ at V_{ds} = -0.2 V (Table S2).²

$$\rho = \frac{Q}{I_g} = \frac{\int I_g dV_{gs}}{I_g}$$

The charge carrier density was calculated from the equation: $eA = eAr_v$, Q signifies the quantity of charge accumulated during the forward scan in the transfer curve (derived from the integration of I_{gs} with V_{gs}), A is the area of the P3HT film interfaced with the ionic liquid (4 mm×9 mm), e is the elementary charge, and r_v is the scan rate of V_{gs}.^{3,4}

$$\mu = \frac{L I_{ds}}{WQV_{ds}}$$

The charge carrier mobility, and μ , was obtained by

Spin coating	V _{gs} scan rate	ON/OFF	V _{th}	Mobility	Charge carrier	
speed (rpm)	(m V s ⁻¹)		(V)	$(cm^2 V^{-1} s^{-1})$	density (cm ⁻²)	
	25	$(3.1 \pm 1.6) \times$	-0.43 ± 0.02	0.10 ± 0.03	$(3.4 \pm 1.2) \times$	
500		103			1015	
	50	$(2.0 \pm 1.1) \times$	-0.44 ± 0.02	0.12 ± 0.04	$(2.8 \pm 0.9) \times$	
		103			1015	
	100	$(1.2 \pm 0.8) \times$	-0.45 ± 0.03	0.16 ± 0.04	$(2.1 \pm 0.5) \times$	
		103			1015	
	25	$(1.5 \pm 0.3) \times$	-0.48 ± 0.06	0.25 ± 0.07	$(1.9 \pm 0.5) \times$	
1000		103			1015	
	50	$(2.6 \pm 1.5) \times$	-0.49 ± 0.06	0.33 ± 0.08	$(1.4 \pm 0.3) \times$	
		103			1015	
	100	$(2.2 \pm 1.2) \times$	-0.50 ± 0.07	0.52 ± 0.08	$(8.2 \pm 0.6) \times$	
		103			1014	
	25	$(2.0 \pm 1.0) \times$	-0.46 ± 0.02	0.20 ± 0.06	$(1.5 \pm 0.1) \times$	
2000		103			1015	
	50	$(2.7 \pm 0.3) \times$	-0.47 ± 0.02	0.26 ± 0.07	$(1.2 \pm 0.1) \times$	
		103			1015	
	100	$(1.7 \pm 0.2) \times$	-0.45 ± 0.03	0.34 ± 0.10	$(8.1 \pm 0.7) \times$	
		103			1014	
	25	$(1.0 \pm 1.0) \times$	-0.44 ± 0.03	0.34 ± 0.11	(8.2 ± 0.8) ×	
4000		104			1014	
	50	$(8.6 \pm 6.2) \times$	-0.44 ± 0.02	0.45 ± 0.11	$(6.3 \pm 0.6) \times$	
		103			1014	
	100	$(5.1 \pm 3.0) \times$	-0.44 ± 0.02	0.61 ± 0.17	$(4.6 \pm 0.3) \times$	
		103			1014	

Table S2. Figures of merit for different spin coating speeds [EMIM][TFSI]-gated P3HT
transistors at different V_{gs} scan rates (100, 50, and 25 m V s ⁻¹).

Figure S1. Transfer characteristics in the linear regime ($V_{ds} = -0.2$ V, (3 cycles)) at V_{gs} scan rate 100, 50, and 25 m V s⁻¹ (inset: output characteristic with $V_{gs} = 0, -0.2, -0.4, -0.6, -0.8, -1$ V and V_{ds} 100, 50, and 25 m V s⁻¹ scan rate) for [EMIM][TFSI]-gated transistors based on a, b, c) low MW d, e, f) intermediate MW g, h, i) high MW P3HT.

Figure S2. Transfer characteristics in the linear regime ($V_{ds} = -0.2 \text{ V}$, (3 cycles)) at V_{gs} scan rate 100, 50, and 25 m V s⁻¹ (inset: output characteristic with $V_{gs} = 0, -0.2, -0.4, -0.6, -0.8, -1 \text{ V}$ and V_{ds} 100, 50, and 25 m V s⁻¹ scan rate) for [EMIM][TFSI]-gated transistors P3HT transistors prepared with spin coating speed a, b, c) 500 rpm d, e, f) 1000 rpm g, h, i) 2000 rpm j, k, l) 4000 rpm.

Figure S3 Transconductance curve for [EMIM][TFSI]-gated transistors based on P3HT deposited at a) high MW (blue line), intermediate MW (red line), and low MW (black line) at 1000 rpm during 30 s b) spin coating rate 500 rpm (black line), 1000 rpm, (red line), 2000 rpm (blue line), and 4000 rpm (green line), on 30 seconds with intermediate MW. Ids level ($V_{ds} = -0.2 V$) at $V_{gs} 50 m V s^{-1}$ scan rate for [EMIM][TFSI]-gated transistors based on P3HT deposited at c) high MW (blue line), intermediate MW (red line), and low MW (black line) d) spin coating rate 500 rpm (black line), 1000 rpm (red line), 2000 rpm (green line), on 30 seconds with intermediate MW (black line) d) spin (green line), on 30 seconds with intermediate MW and 1000 rpm at $V_{gs} 25$ (black line), 50 (red line), and 100 (blue line) m V s⁻¹ scan rate.

Figure S4 AFM height images of (a) low MW, (b) intermediate MW and (c) high MW with a same height scale of 0 to 8 nm.

Figure S5 Transient response of an [EMIM] [TFSI]-gated P3HT transistor with high, intermediate, and low MW for $V_{gs} = a$) -0.5 V, b) -0.8 V, and c) -1 V at different V_{ds} . The duration time of the V_{gs} bias is 200 ms. Transient response of [EMIM][TFSI]-gated P3HT transistors prepared with spin coating rate 500, 1000, 2000, and 4000 rpm, on 30 seconds with intermediate MW with $V_{gs} = d$) -0.5 V, e) -0.8 V, f) -1 V, and g) -1.2 V at different V_{ds} . The duration of the V_{gs} bias is 200 ms.

References

- 1. B. D. Paulsen and C. D. Frisbie, J. Phys. Chem. C, 2012, 116, 3132.
- 2. Y. Xia, J. H. Cho, J. Lee, P. P. Ruden and C. D. Frisbie, Adv. Mater., 2009, 21, 2174
- 3. Y. Xia, J. H. Cho, B. Paulsen, C. D. Frisbie and M. J. Renn, Appl. Phys. Lett., 2009, 94,
 - 013304.
- 4. M. Zakrewsky, K. S. Lovejoy, T. L. Kern, T. E. Miller, V. Le, A. Nagy, A. M. Goumas, R. S. Iyer, R. E. Del Sesto and A. T. Koppisch, Proceedings of the National Academy of Sciences, 2014, 111, 13313-13318.
- 5. Y. Na and F. S. Kim, Chemistry of Materials, 2019, 31, 4759-4768.