Supporting Information

MOF-based sensors for the detection of airborne α -pinene

P. Pires Conti,^{a,b} P. Iacomi,^{a,c} P. F. Brântuas,^a M. Nicolas,^b R. Anton,^b S. Moularat,^b S. Dasgupta,^d N. Steunou,^d G. Maurin,^a and S. Devautour-Vinot^a

^aInstitut Charles Gerhardt Montpellier (ICGM), UMR 5253 – CNRS/UM/ENSCM, Pole Chimie Balard Recherche, 34293 Montpellier, France

^bCentre Scientifique et Technique du Bâtiment (CSTB), 34293 Montpellier, France

^cSurface Measurement Systems (SMS), Unit 5, Wharfside, London HAO 4PE, UK

^dInstitut Lavoisier de Versailles (ILV), UMR 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, 78035 Versailles cedex, France

Table of Contents

1	Calibration of DVS2		
2	Characterization of the powdered DUT-4(AI) and MIL-100(Fe)		3
	2.1	DUT-4(AI)	3
	2.2	MIL-100(Fe)	4
3	Chai	racterization of DUT-4(AI) and MIL-100(Fe) ethanolic suspensions	7
4	Chai	racterization of MOF@QCM	8
	4.1	DUT-4(AI)@QCM	8
	4.2	MIL-100(Fe)@QCM	9
5	DUT	-4(Al)@QCM and MIL-100(Fe)@QCM sensor response	. 10
	5.1	Repeatability	. 10
	5.2	Recovery time	. 10
	5.3	Sensitivity	. 11
6	Chai	racterization of DUT-4(AI)/MIL-100(Fe)@QCM	. 12
7	7 DUT-4(AI)/MIL-100(Fe)@QCM repeatability13		

1 Calibration of DVS

A calibration procedure was applied in order to evaluate the partial pressure of α -pinene in the carrier gas when using the bubbler configuration. Two sorption isotherms, considering pure vapor of α -pinene and α -pinene/Argon mixture configurations, were collected on a reference material displaying a condensation-like adsorption behavior, *i.e.*, PCN-777 (cf Figure S1). Both isotherms were adjusted until overlapping by a scaling factor (0.35). The α -pinene partial pressure in the α -pinene/Argon mixture corresponds to 281 Pa at 303 K *versus* 803 Pa in the pure phase.

Figure S1 α -pinene adsorption isotherms recorded at 303 K for PCN-777, using the pure vapor (black squares) and α -pinene/Argon mixture (red circles) configurations **a**) before and **b**) after adjustment.

2 Characterization of the powdered DUT-4(AI) and MIL-100(Fe)

2.1 DUT-4(AI)

Figure S2 PXRD pattern recorded on the powdered DUT-4(AI) (red line). A simulated PXRD of the DUT-4(AI) structure is given for reference (blue line).

Figure S3 N₂ sorption isotherm collected at 77K on the powdered DUT-4(AI) before (black line) and after (blue line) α -pinene sorption experiments. Adsorption and desorption branches are evidenced by the filled and empty symbols, respectively.

2.2 MIL-100(Fe)

Figure S4 PXRD pattern recorded on the powdered MIL-100(Fe) (red line). A simulated PXRD of the MIL-100(Fe) structure is given for reference (blue line).

Figure S5 FT-IR spectrum of MIL-100(Fe).

Figure S6 Thermogravimetric analysis of MIL-100(Fe).

Figure S7 N₂ sorption isotherm collected at 77K on the powdered MIL-100(Fe) before (black line) and after (blue line) α -pinene sorption experiments. Adsorption and desorption branches are evidenced by the filled and empty symbols, respectively.

Table S1 Textural properties of DUT-4(Al) and MIL-100(Fe) deduced from N_2 sorption experiments.

	S _{BET} / m ² g ⁻¹		V _{pore} / cm ³ g ⁻¹	
MOF Structures	Before α- pinene sorption	After α- pinene sorption	Before α-pinene sorption	After α- pinene sorption
DUT-4(AI)ª	1198	1115	0.63	0.58
MIL-100(Fe) ^a	1223	1194	0.56	0.53

^aSamples were activated at 423 K for 8 hr

Figure S8 SEM images of the powdered **a)** DUT-4(AI) and **b)** MIL-100(Fe). They evidence the small size of the agglomerates of DUT-4(AI) and MIL-100(Fe), consistent with DLS analysis (Figure S9).

3 Characterization of DUT-4(AI) and MIL-100(Fe) ethanolic suspensions

Figure S9 Dynamic light scattering curve for the **a**) DUT-4(AI) colloidal suspension (7.0 g.L⁻¹) and **b**) MIL-100(Fe) colloidal suspension (11.5 g.L⁻¹) in absolute ethanol. The average hydrodynamic diameter is around 200 nm for both suspensions.

4 Characterization of MOF@QCM

4.1 DUT-4(AI)@QCM

Figure S10 PXRD pattern recorded on DUT-4(AI)@QCM film as-deposited (black line) and after α -pinene sorption experiments (blue line). PXRD pattern of the powdered DUT-4(AI) is given for reference (red line).

Figure S11 SEM images of DUT-4(AI)@QCM: a) top and b) cross-sectional views. The film thickness is close to 2.85 μ m.

4.2 MIL-100(Fe)@QCM

Figure S12 PXRD pattern recorded on MIL-100(Fe)@QCM film as-deposited (black line) and after α -pinene sorption experiments (blue line). PXRD pattern of the pristine powdered MIL-100(Fe) is given for reference (red line).

Figure S13 SEM images of MIL-100(Fe)@QCM: **a**) top and **b**) cross-sectional views. The film thickness is close to $1.21 \,\mu$ m.

5 DUT-4(AI)@QCM and MIL-100(Fe)@QCM sensor response

5.1 Repeatability

Figure S14 Normalized relative frequency shift $[\Delta f/f_{0Norm} = (\Delta f/f_0)/(\Delta f/f_0)_{max}]$ for DUT-4(AI)@QCM with **a**) increasing and **b**) decreasing α -pinene concentration over three sorption cycles. Normalized relative frequency shift $[\Delta f/f_{0Norm} = (\Delta f/f_0)/(\Delta f/f_0)_{max}]$ for MIL-100(Fe)@QCM with **a**) increasing and **b**) decreasing α -pinene concentration over three sorption cycles. Lines are guide for the eyes.

5.2 Recovery time

Table S2 Recovery time for DUT-4(Al)@QCM and MIL-100(Fe)@QCM, as defined by the time to achieve 90 % total change of frequency shift to reach the baseline for α -pinene concentration switch back to 2 ppm.

OCM	Recovery time / s			
QCIVI	5 ppm to 2 ppm	24 ppm to 2 ppm	47 ppm to 2 ppm	
DUT-4(AI)	28	24	20	
			70	
MIL-100(Fe)	54	51		

5.3 Sensitivity

Figure S15 Normalized relative frequency shift for **a**) DUT-4(AI)@QCM and **b**) MIL-100(Fe)@QCM *versus* the equivalent α -pinene concentration. For the sake of visibility, each point corresponds to the average of the data collected with increasing and decreasing α -pinene concentration and error bars represent 3 standard deviations. Linear regressions were considered to evaluate the sensitivity, S, of both sensors with respect to the equivalent α -pinene concentration.

QCM	α -pinene concentration / ppm	Sensitivity in log ₁₀ (ppm) ⁻¹
	0.05 – 0.6	1 x 10 ⁻⁴
DUT-4(AI)	0.6 - 4.8	1 x 10 ⁻³
	≥ 4.8	2 x 10 ⁻⁴
	≤ 4.8	7 x 10 ⁻⁵
WIIL-100(FE)	≥ 4.8	5 x 10 ⁻⁴

Table S3 Sensitivity of DUT-4(AI)@QCM and MIL-100(Fe)@QCM according to the equivalent α -pinene concentration

6 Characterization of DUT-4(AI)/MIL-100(Fe)@QCM

Figure S16 PXRD pattern recorded on DUT-4(AI)/MIL-100(Fe)@QCM film as-deposited (red line) and after α -pinene sorption experiments (orange line). PXRD patterns of DUT-4(AI)@QCM (black line) and MIL-100(Fe)@QCM (blue line) are given for reference. The typical brag peaks of DUT-4(AI) and MIL-100(Fe) in DUT-4(AI)/MIL-100(Fe)@QCM are highlighted by letters A and B, respectively.

Figure S17 SEM images of DUT-4(AI)/MIL-100(Fe)@QCM: **a)** top and **b)** cross-sectional views. Film thickness is close to 9.90 μm. **c)** EDX spectrum of DUT-4(AI)/MIL-100(Fe)@QCM.

7 DUT-4(AI)/MIL-100(Fe)@QCM repeatability

Figure S18 Relative frequency shift for DUT-4(AI)/MIL-100(Fe)@QCM with **a**) increasing and **b**) decreasing α -pinene concentration over two sorption cycles. Lines are guides for the eyes.