Green Synthesis of disordered N-doped Carbonaceous Aerogel from Waste for the Removal of Over-the-counter Drugs and Environmental Assessment

Himanshu Asati,¹ Raka Mondal,² Kumud Malika Tripathi^{1*}

¹ Department of Chemistry, Indian Institute of Petroleum & Energy, Visakhapatnam, Andhra Pradesh, India, 530003.

² Department of Chemical Engineering, Indian Institute of Petroleum & Energy, Visakhapatnam, Andhra Pradesh, India, 530003.

Email: kumud20010@gmail.com, kumud@iipe.ac.in

Fig. S1 UV-vis spectra of (a) ASP and (b) PCM before and after 40 minutes of adsorption.

Fig. S2 Comparative adsorption efficiency of N-CA with GO towards the adsorption of ASP and PCM.

Table. S1 Pseudo first order and pseudo second order kinetics for ASP and PCM adsorption
--

Pseudo First Order						
	C ₀	k ₁	R ²	q _e , cal	q _e , exp	
	(mg L-1)	(min ⁻¹)		(mg g ⁻¹)	(mg g ⁻¹)	
ASP	20	0.1932	0.8638	32.3832 ± 26.8674	12.4183	
РСМ	15	0.1662	0.8837	9.5751 ± 6.0409	9.6159	

Pseudo Second Order

	C ₀	\mathbf{k}_2	R ²	q _e , cal	q _e , exp
	(mg L ⁻¹)	(min ⁻¹)		(mg g ⁻¹)	(mg g ⁻¹)
ASP	20	0.0139	0.9975	10.6838 ± 0.1873	12.4183
РСМ	15	0.0362	0.9989	7.8474 ± 0.0887	9.6159

Langmuir Isotherm						
	C ₀	K _L	R ²	q _m	R _L	
	(mg L ⁻¹)	(mg g ⁻¹)		(mg g ⁻¹)		
ASP	20	0.0384	0.9842	138.6963 ± 7.8687	0.5658	
РСМ	15	0.0836	0.9973	117.7856 ± 2.7219	0.4437	
Freundlich Isotherm						
	C ₀	K _F	R ²	n		
	(mg L ⁻¹)	(mg g ⁻¹)				
ASP	20	6.7234	0.8305	2.1101 ± 0.4349		
PCM	15	11.9017	0.9133	2.1408 ± 0.2976		

Table. S2 Langmuir and Freundlich adsorption isotherm for ASP and PCM adsorption.