Supporting Information

Efficient peroxymonosulfate activation by Fe-BiOCl hollow microsphere for carbamazepine removal

Liyong Ding †^{a*}, Xuejuan Huang †^b, Yuqin Liu ^b, Qingqing Jiang ^b, Juncheng Hu ^{b*}

^a College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
^b Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
[†] These authors contributed equally to this work.

*Corresponding authors E-mail: liyongding1988@163.com; jchu@mail.scuec.edu.cn

1. Experimental Section

1.1. Chemicals and materials

All the materials were of analytical grade and used without further purification. Bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O), ferric nitrate nonahydrate (Fe(NO₃)₃·9H₂O), potassium chloride (KCl), absolute ethanol, glycerol, methanol (MeOH), tert-butanol (TBA), p-benzoquinone (BQ) and ethylenediaminetetraacetate (EDTA-2Na) were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Carbamazepine (CBZ), Potassium monopersulfate triple salt (PMS, KHSO₅·0.5KHSO₄·0.5K₂SO₄, \geq 42% KHSO₅ basis) and L-histidine (HD) were purchased from Aladdin.

1.2. Synthesis of Fe-BiOCl and pure BiOCl hollow microsphere

Firstly, 15 mL of glycerol and 50 mL of absolute ethanol were mixed and stirred to form a homogeneous solvent. Subsequently, 0.149 g of KCl (2 mmol) and 0.970 g of Bi(NO₃)₃·5H₂O (2 mmol) was dissolved successively in the mixture solvent under constant stirring, then a certain amount of Fe(NO₃)₃·9H₂O (molar ratio, Fe: Bi = 0.01, 0.02, 0.03, 0.05 and 0.07) was added and continue stirring for 30 min. After that, the suspension was transferred into a 100 mL Teflon-lined stainless autoclave and maintained at 180°C for 12 h. The precipitate was obtained by centrifugation, washed several times with deionized water and ethanol, the final yellow products were collected after drying at 60°C for 12 h and denoted as 1%, 2%, 3%, 5% and 7% Fe-BOC for further characterization, respectively.

The preparation method of BiOCl hollow microsphere (denoted as BOC) was the same as that of Fe-BiOCl except that $Fe(NO_3)_3 \cdot 9H_2O$ is not added.

1.3. Photocatalytic measurement

Photocatalytic performance was evaluated by the degradation of carbamazepine (CBZ) under simulated visible light irradiation. In a typical procedure, a certain amount of photocatalyst powder and PMS were added in 50 mL of CBZ solution (10 mg/L), the mixture was ultrasonicated for 10 min to form a homogeneous suspension. After that, the suspension was magnetically stirred in dark for 30 min to establish the adsorption-desorption equilibrium before illumination. The photocatalytic process was

carried out in Pyrex glass bottles with circulating water, and a 300 W Xe lamp with the UV cutoff filter ($\lambda > 420$ nm) was used as the light source. About 3 mL of suspension was taken at certain intervals and filtered out by 0.22 µm membrane filters. The concentrations of CBZ were detected by UV-vis spectrophotometer (Shimadzu, Japan) and the detection wavelength was at 284 nm.

1.4. Characterization

The crystalline phases were characterized by powder X-ray diffraction (XRD) (Bruker D8 Advance, Cu K α = 1.5404 Å, Germany). The morphology images were studied by field emission scanning electron microscope (FE-SEM, SU8010, Hitachi, Japan). Transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) were observed on Talos F200X (Thermo Fisher, USA). X-ray photoelectron spectroscopy (XPS) was carried out on a VG Multilab 2000 (VG Inc.), photoelectron spectrometer using Al K α radiation as the excitation source. The UV-vis diffuse reflectance spectroscopy (DRS) was obtained from a Cary-5000 spectrophotometer (Agilent) with BaSO₄ as reference substance. Photoluminescence (PL) measurements were carried out on an F-7000 (Hitachi) fluorescence spectrophotometer with a 150 W Xe lamp at 250 nm excitation wavelength. N₂ adsorption/desorption was tested on an ASAP 2020 PLUS adsorption analyzer (Micromeritics, USA) to obtain the Brunauer-Emmett Teller (BET) surface area and the pore size distribution.

The photoelectrochemical tests were carried out on CHI-760E electrochemical workstation (Shenzhen LAMPLIC Science Co. Ltd. China) with a standard threeelectrode system. The electrolyte was 0.5 M Na₂SO₄ aqueous solution, Pt flake and an Hg/HgO electrode were used as the counter electrode and reference electrode, respectively. The catalyst solution (10 mg BiOCl, 500 μ L ethanol and 450 μ L ultrapure water, 50 μ L Nafion) was uniformly coated on the ITO glass (1 cm × 1 cm) to prepare working electrodes. The frequency range of electrochemical impedance spectroscopy (EIS) test was 10⁻⁵-10⁻¹ Hz and no voltage was applied between the electrodes. A 3 W LED lamp was used as the light source ($\lambda \ge 420$ nm) to trigger the photocurrent response.

3

Fig. S1. SEM images of (a) 1% Fe-BOC, (b) 2% Fe-BOC, (c) 5% Fe-BOC and (d) 7% Fe-BOC samples.

Fig. S2. Effects of (a) Fe doping amount, (b) catalyst dosage, (c) PMS concentrations,(d) initial pH values, (e) co-existing inorganic anions on the removal of CBZ.

Figure	Experimental conditions		k (10 ⁻² min ⁻¹)	Removal rate (%)
(a)	30 mg catalyst, (a) 0.5 mM PMS, pH=6.7	BOC	0.37	19.6
		1% Fe-BOC	2.80	76.2
		2% Fe-BOC	3.06	70.9
		3% Fe-BOC	4.49	79.7
		5% Fe-BOC	4.33	76.1
		7% Fe-BOC	4.62	77.5
	3% Fe-BOC, 0.7 mM PMS, pH=6.7	10 mg	0.96	34.4
		20 mg	2.75	69.4
(b)		30 mg	5.17	85.9
		40 mg	5.69	87.9
		50 mg	6.56	87.3
	30 mg 3% Fe- BOC, pH=6.7	0.1 mM	0.85	32.3
		0.3 mM	1.74	57.7
(c)		0.5 mM	3.31	76.1
		0.7 mM	5.47	86.5
		0.9 mM	6.73	90.3
(d)	30 mg 3% Fe- BOC, 0.7 mM PMS	pH=3	4.91	84.9
		pH=5	4.06	81.8
		pH=6.7	5.44	87.9
		pH=9	3.38	73.8
		pH=11	0.36	18.3
(e)	30 mg 3% Fe- BOC, 0.7 mM PMS, pH=6.7	Cl	2.62	85.7
		SO_4^2	5.25	84.1
		HCO ₃	4.26	79.9
		NO ₃	4.87	80.9
		original	5.44	86.5

Table S1. Degradation kinetic constants and removal rates for different samples.	

Fig. S3. SEM images of 3% Fe-BOC before (a) and after (b) the cycle experiment.

Fig. S4. XRD pattern before and after the cycle experiment.

Fe-BOC.						
Sample	Surface Area (m²/g)	Average pore size (nm)	Pore volume (cm ³ ·g ⁻¹)			
BOC	28.7	0.20	24.7			
3% Fe-BOC	82.5	0.27	11.4			

Table S2. BET surface area, pore volume and average pore diameter of BOC and 3%

^{a.} The surface area is measured with the Brunauer–Emmett–Teller (BET) method.

^{b.} The pore volume is the single-point total pore volume at $P/P_0 = 0.998$.

^{c.} The average pore size is calculated using the adsorption branch by Barrett–Joyner– Halenda (BJH) method.