Supplementary Information

Engineering Pt-CeO₂ interfaces for Reverse Water-Gas Shift (RWGS) reaction

Kauê G. G. dos Santos,^a Alisson S. Thill,^a Lívia P. Matte,^a Gustavo Z. Girotto,^a Mateus V. Costa,^a Denise R. Bohn,^b Fernanda Poletto,^b Fabiano Bernardi^{a,*}

^a Programa de Pós-Graduação em Física, Instituto de Física, Universidade Federal do Rio Grande do Sul, Brazil

^b Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Brazil

Figure 1 – Typical TEM images of (a) CeO₂ Hyd, (b) CeO₂ High S, and (c) CeO₂ Std nanoparticles.

Figure 2 – Typical image of the water drop during the contact angle measurement.

Figure 3 - C 1s XPS spectra of the as prepared Pt-CeO₂ nanoparticles.

Figure 4 - FTIR spectra of the Pt-CeO₂ nanoparticles.

Figure 5 - (a) H_2O/CO and (b) CO/CO_2 ratio from mass spectrometry measurements during RWGS reaction from 400 °C to 500 °C.

Figure 6 – H_2O/CO ratio from mass spectrometry measurements during RWGS reaction at 400 $^{\circ}C$.

Figure 7 – In situ time-resolved XANES spectra at the Ce L_3 edge of the Pt-CeO₂ samples during (a-c) reduction treatment at 400 °C under H₂ atmosphere and (d-f) RWGS reaction at 400 °C.

Figure 8 - Typical fit of the in situ XANES spectrum at the Ce L_3 edge for the Pt-CeO₂ High S sample at the end of the heating process at 400 °C.

Figure 9 – H₂-TPR measurement showing the detection of H₂O as a function of temperature during heating to 400 $^{\circ}$ C.

Figure 10 - In situ XAS spectra at the Pt L_3 edge of the (a) Pt-CeO₂ Hyd, (b) Pt-CeO₂ High S, and (c) Pt-CeO₂ Std. samples as prepared, during reduction treatment and RWGS reaction.

Table 1 – Parameters obtained from the fit result of the in situ EXAFS measurements at Pt L₃ edge. In the table, N, ΔR , σ^2 , c_3 and c_4 stand for the coordination number, variation of the interatomic distance between the absorbing and scattering atom, Debye-Waller factor, and third and fourth order EXAFS cumulant, respectively. The parameters associated to Pt-Pt, Pt-O and Pt-(OH)_x scattering paths are associated to metallic Pt, PtO₂, H₂Pt(OH)₆ clusters, respectively.

Sample	Parameters	As Prepared	Reduction	RWGS reaction
	N _{Pt-Pt}	8.0 ± 1.0	9.7 ± 0.7	10.0 ± 0.8
	N _{Pt-O}	-	0.2 ± 0.2	0.8 ± 0.2
	N _{Pt-(OH)x}	2.8 ± 0.3	-	-
	ΔR_{Pt-Pt}	0.03 ± 0.01	0.014 ± 0.004	0.014 ± 0.004
	ΔR _{Pt-O}	-	-0.11 ± 0.02	-0.11 ± 0.03
Pt-CeO ₂ Hyd	$\Delta R_{Pt-(OH)x}$	-0.12 ± 0.01	-	-
	σ ² Pt-Pt	0.004 ± 0.003	0.0084 ± 0.0009	0.0084 ± 0.0009
	σ ² Pt-O	-	0.014 ± 0.006	0.014 ± 0.006
	σ ² Pt-(OH)x	0.008 ± 0.002	-	-
	c ₃	-	0.0008 ± 0.0002	-0.0007 ± 0.0003
	c ₄	-	0.0004 ± 0.0001	0.0004 ± 0.0001
	N _{Pt-Pt}	7.2 ± 0.6	9.6 ± 0.4	9.8 ± 0.04
	N _{Pt-O}	-	0.62 ± 0.08	0.9 ± 0.1
	N _{Pt-(OH)x}	2.1 ± 0.1	-	-
	ΔR_{Pt-Pt}	0.010 ± 0.007	0.026 ± 0.003	0.026 ± 0.003
	ΔR _{Pt-O}	-	-0.077 ± 0.009	-0.077 ± 0.009
Pt-CeO ₂ High S	ΔR _{Pt-(OH)x}	-0.114 ± 0.006	-	-
	σ^{2}_{Pt-Pt}	0.005 ± 0.001	0.0109 ± 0.0005	0.0108 ± 0.0005
	σ ² Pt-O	-	0.011 ± 0.002	0.011 ± 0.002
	$\sigma^{2}_{Pt-(OH)x}$	0.004 ± 0.001	-	-
	C ₃	-	0.00006 ± 0.00002	-0.0001 ± 0.0002
	C4	-	0.00048 ± 0.00007	0.00049 ± 0.00007
	N _{Pt-Pt}	8.6 ± 0.7	9.3 ± 0.7	9.8 ± 0.7
	N _{Pt-O}	-	0.5 ± 0.1	0.7 ± 0.1
	N _{Pt-(OH)x}	2.0 ± 0.2	-	-
	ΔR_{Pt-Pt}	0.017 ± 0.007	0.015 ± 0.004	0.015 ± 0.004
	ΔR _{Pt-O}	-	-0.06 ± 0.02	-0.06 ± 0.02
Pt-CeO ₂ Std	$\Delta R_{Pt-(OH)x}$	-0.109 ± 0.08	-	-
	σ ² Pt-Pt	0.005 ± 0.001	0.0103 ± 0.0008	0.0103 ± 0.0008
	σ ² Pt-O	-	0.007 ± 0.003	0.007 ± 0.003
	$\sigma^{2}_{Pt-(OH)x}$	0.006 ± 0.002	-	-
	c ₃	-	-0.0005 ± 0.0003	-0.0005 ± 0.0003
	c ₄	-	0.0005 ± 0.0001	0.0006 ± 0.0001