Electronic Supplementary Material (ESI) for RSC Applied Interfaces. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Surface Characteristics of Thin Film Composite Polyamide Membranes Dictate Silver Nanoparticle Loading Efficacy

Afsana Munni^{1,2,3}, Mohammed A. Bashammakh^{1,2}, Marion Bellier^{1,2}, Ali Ansari^{1,3}, Mohamed E. A. Ali^{1,2,4}, H. Enis Karahan^{1,2,5}, Rafiqul Islam³, Treavor H. Boyer¹, François Perreault^{1,2,6,*}

¹School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States

²Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ 85287, United States

³Cactus Materials Inc., Tempe, AZ 85282, United States

⁴Egypt Desalination Research Center of Excellence (EDRC) & Hydrogeochemistry Department, Desert Research Center, Cairo, 11753, Egypt

⁵CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France

⁶Department of Chemistry, University of Quebec in Montreal, CP 8888, Succ. Centre-Ville, Montreal, QC, H3C 3P8, Canada

* Corresponding Author: François Perreault, Email: perreault.francois@uqam.ca

Figure S1. EDS spectra of **(A,C,E,G)** pristine and **(B,D,F,H)** AgNP-loaded SW 30, BW 30, AMI H, and NF 270 membranes.

Figure S2. AFM-based surface topography images of pristine membranes (A) BW 30, (B) SW 30, (C) AMI H, and (D) NF 270.

Table S1. Summary of antimicrobial efficacy and water flux with silver loading by functionalizing different functional components.

AgNPs preparation	Materials	Required amount	Loading µg/cm²	Bacterial inactivation %	Water permeability coefficient L m ⁻² h ⁻¹ bar -1	Salt rejection coefficient L m ⁻² h ⁻¹	Ref.	
precursor: AgNO ₃ reducing agent: NaBH ₄	-	-	-	-	pristine: 2.41±0.14	pristine: 0.28±0.05	[1]	
	SW 30	1:1 mM	0.8±0.02	90.7±3.8% (<i>E. coli</i>)	2.12±0.20	0.22±0.01		
		2:2 mM	1.5±0.03	91.2±2.6% (<i>E. coli</i>)	2.01±0.10	0.21±0.02		
		5:5 mM	3.7±0.4	90.7±3.8% (<i>E. coli</i>)	2.01±0.12	0.27±0.02		
	cellulose fibers	100:800 mM	13.4	almost 100% (<i>E. coli</i>)	-	-	[2]	
	blotting paper	10:1 mM 25:1 mM	2.2±0.7 6.0±1.4	CFU/mL reduced from 10 ⁹ to 10 ⁵ (<i>E. coli</i>)	-	-	[3],[4]	
	stainless steel	300:300 mM	1.463	CFU decreased from 60.9% to 25.1% (<i>E. coli</i>)	-	-	[5]	
	BW 30	3:3 mM	4.1±0.16	-	-	-	this study	
	SW 30	3:3 mM	2.9±0.3	-	-	-		
	AMI H	3:3 mM	2.8±0.5	-	-	-		
	NF 270	3:3 mM	2.3±0.13	-	-	-		
PDA+AgNP	XLE	PDA: 0.4 g AgNO₃: 4 g/L	0.2 to 13.3	42.4±5.7% (E. coli) 62.7±9.3% (B. subtilis)	reduced from 54.3 \pm 1.4 to 32.1 \pm 2.8 L m ⁻² h ⁻¹	NaCl reduction reduced to ~10%	[6]	
Ag-zeolite coating using PVA and PDA	NF 90	AgNO ₃ : 0.1 N zeolite: 0.05 g PVA: 0.23 to 0.43 g dopamine HCI: 2 mg/mL	1.85 to 3.75	CFU/mL reduced from ~10 ⁸ to ~10 ⁵ (<i>P. aeruginosa</i>)	-	-	[7]	
GO/Ag	TFC FO	GO: 100 mg, AgNO₃: 5mM NaBH₄: 5 mM	4	-	water flux increase 3% for FO and 13% for RO	decreased ~2.5% for FO and increased ~3.5% for RO	[8]	

Sample label	Peak @ 284.6 eV		Peak @ 286.0 eV		Peak @ 287.6 eV	
	$\delta_{\text{BE (eV)}}$	%	$\delta_{\text{BE (eV)}}$	%	$\delta_{\text{BE (eV)}}$	%
SW 30	1.9	78.2	0.8	14.8	1.2	6.9
BW 30	2.0	53.8	2.0	40.7	1.8	5.9
AMI H	2.4	60.7	0.8	10.9	2.3	14.3
NF 270	3.0	63.5	3.0	20.1	3.2	16.4

Table S2. Binding energies and atomic percentages of bonds on pristine RO and NF membranes.

References

[1] M. Ben-Sasson *et al.*, "In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation," *Water Res*, vol. 62, pp. 260–270, Oct. 2014, doi: 10.1016/j.watres.2014.05.049.

[2] C. Zhu, J. Xue, and J. He, "Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials," *J Nanosci Nanotechnol*, vol. 9, no. 5, pp. 3067–3074, May 2009, doi: 10.1166/jnn.2009.212.

[3] B. Swensson, M. Ek, and D. G. Gray, "In Situ Preparation of Silver Nanoparticles in Paper by Reduction with Alkaline Glucose Solutions," *ACS Omega*, vol. 3, no. 8, pp. 9449–9452, Aug. 2018, doi: 10.1021/acsomega.8b01199.

[4] T. A. Dankovich and D. G. Gray, "Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment," *Environ Sci Technol*, vol. 45, no. 5, pp. 1992–1998, Mar. 2011, doi: 10.1021/es103302t.

[5] K. Ranjbari *et al.*, "Controlling silver release from antibacterial surface coatings on stainless steel for biofouling control," *Colloids Surf B Biointerfaces*, vol. 216, p. 112562, Aug. 2022, doi: 10.1016/J.COLSURFB.2022.112562.

[6] Z. Yang, Y. Wu, J. Wang, B. Cao, and C. Y. Tang, "In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane," *Environ Sci Technol*, vol. 50, no. 17, pp. 9543–9550, Sep. 2016, doi: 10.1021/ACS.EST.6B01867/ASSET/IMAGES/LARGE/ES-2016-01867A_0007.JPEG.

[7] J. Wu, C. Yu, and Q. Li, "Novel regenerable antimicrobial nanocomposite membranes: Effect of silver loading and valence state," *J Memb Sci*, vol. 531, pp. 68–76, 2017, doi: 10.1016/j.memsci.2017.02.047.

[8] A. Soroush, W. Ma, M. Cyr, M. S. Rahaman, B. Asadishad, and N. Tufenkji, "In Situ Silver Decoration on Graphene Oxide-Treated Thin Film Composite Forward Osmosis Membranes: Biocidal Properties and Regeneration Potential," *Environ Sci Technol Lett*, vol. 3, no. 1, pp. 13–18, Jan. 2016, doi:10.1021/acs.estlett.5b00304