Supporting Information

From rust to riches: phytochemically assisted doping of superparamagnetic Fe3O4 nanoparticles with Au for SERS sensing

Dariush Aligholizadeh^{1,2}, Landon Bechdel¹, Mansoor Johnson¹, Vera Smolyaninova³, and Mary Sajini $Devadas^{1*}$

- 1. Department of Chemistry, Towson University, Towson, Maryland 21252, USA
- 2. University of Maryland Baltimore-County, Baltimore, Maryland 21250, USA
- 3. Department of Physics, Astronomy, and Geosciences, Towson University, Towson, Maryland 21252, USA
- Corresponding author e-mail: mdevadas@towson.edu

Table of Contents

[Table S1. Anthocynanin values for four independent trials on the](#page-4-0) *C. Canadensis* extract [demonstrating an average anthocyanin concentration of 105 ± 16 μM..](#page-4-0) 5

[Fig. S1. UV-vis absorption spectrum of the synthesized](#page-5-0) Au nanoparticle synthesized with *C. Canadensis* [demonstrating a broad plasmon resonance centered around 540 nm..........................](#page-5-0) 6

Fig. S2. ATR-IR spectrum of citrate-capped $Fe₃O₄$ used as a template for Au loading. Six main bands are seen: (1) 535 cm^{-1} from Fe-O, (2) 1048^{-1} from C-O-C of the citrate ligand, (3) 1071 cm^{-1} ¹ [from C-O-C of the citrate ligand, \(4\) 1389 cm](#page-6-0)⁻¹ from Fe-COO , (5) 1589 cm⁻¹ from Fe-COO , (6) 3304 cm-1 from O-H of the citrate. [...](#page-6-0) 7

[Table S2. Compiled theoretical assignments for Fe](#page-7-0)3O⁴ IR-active vibrational modes.................... 8

Fig. S3. Annotated IR spectra for cysAuFe₃O₄ (left, yellow trace) and cysteamine powder (right, [gray trace\). Different simulated data \(black trace\) are seen due to the lack of protonation of the](#page-8-0) [cysteamine in powdered form and the presence of an extra proton when dissolved in aqueous](#page-8-0) media. The lack of a 2075 cm⁻¹ band (due to S-H stretching) in the cysAuMNP demonstrates the presence [of an Au-S bond between the cysteamine and the Au nanoparticle. The simulated data](#page-8-0) for cysAuFe₃O₄ was obtained from the protonated form of cysteamine $(HS(CH_2)_2NH_3^+)$ while the simulated data for the cysteamine powder was obtained from the neutral species $(HS(CH_2)_2NH_2)$. The annotated peaks are described in Table S3. [...](#page-8-0) 9

Table S3. Vibrational assignments for cysteamine present in $\cos A u \cdot F_3O_4$ and cysteamine powder. CysAuFe3O⁴ [was simulated using a protonated, or basic, form of cysteamine, and the powder was](#page-9-0) [simulated using the neutral species. Theoretical frequencies are chosen such that the vibrational](#page-9-0) [modes of both are the same and are the closest wavenumber occurrence of each vibration to the](#page-9-0) [protonated value. For example, if both a 691 cm](#page-9-0)⁻¹ and 800 cm⁻¹ $v(C-S)$ exist for the neutral species, the 691 cm-1 [is shown in the table as it is closer to 710 cm](#page-9-0)-1 than 800 cm-1 is............................. 10

Fig. S4. Annotated IR spectra for tioAuFe₃O₄ (green trace) and tiopronin powder (gray trace) as [well as the theoretical simulated spectra \(black trace\). Eight distinguishable peaks are found in the](#page-10-0) tioAuFe₃O₄ with four being attributable to Fe₃O₄ and the other four being attributable to the tiopronin powder. The lack of the 2528 cm^{-1} band due to thiol stretching indicates the presence of [an Au-S in place of the S-H. The annotated peaks are described in Table S4..............................](#page-10-0) 11

[Table S4. Vibrational assignments for the tiopronin present in tioAuFe](#page-11-0)₃O₄ and cysteamine powder. TioAuFe₃O₄ [and tiopronin powder were simulated using the neutral tiopronin species..............](#page-11-0).. 12

Fig. S5. Annotated IR spectra for hisAuFe₃O₄ (dark blue trace) and tiopronin powder (gray trace) [as well as the theoretical simulated spectra \(black trace\). Eight distinguishable peaks are found in](#page-12-0) the hisAuFe₃O₄ with five being attributable to Fe₃O₄ and the other three being attributable to the [tiopronin powder. The annotated peaks are described in Table S5.](#page-12-0) ... 13

[Table S5. Vibrational assignments for the histidine present in hisAuFe](#page-13-0)₃O₄ and histidine powder. The hisAuFe₃O₄ and histidine [powder were simulated using the neutral histidine species.](#page-13-0) 14

Fig. S6. Annotated IR spectra for gluAuFe₃O₄ (light blue trace) and tiopronin powder (gray trace) [as well as the theoretical simulated spectra \(black trace\). Fourteen distinguishable peaks are found](#page-14-0) in the gluAuFe₃O₄ with four being attributable to Fe₃O₄ and the other ten being attributable to the tiopronin powder. The absence of the 2521 cm^{-1} band (S-H stretching) in the gluAuMNP [demonstrates the presence of an Au-S bond between the glutathione and the Au. The annotated](#page-14-0) [peaks are described in Table S6..](#page-14-0) 15

[Table S6. Vibrational assignments for the glutathione present in gluAuFe](#page-15-0)₃O₄ and glutathione powder. GluAuFe3O⁴ [and glutathione powder were simulated using the neutral glutathione species.](#page-15-0)

[...](#page-15-0) 16

[Fig. S7. Raman spectra of the full window \(1900-400 cm](#page-16-0)⁻¹) for all analytes annotated. (a) The [overlay of all Raman spectra with the laser background \(simply passing the laser through an empty](#page-16-0) [vial\), all clearly visible peaks are annotated. \(b\) The same overlay as \(a\), but the laser background](#page-16-0) [is now subtracted from all samples and all clearly visible peaks are annotated.](#page-16-0) 17

[Fig. S8. Magnetic saturation as a function of temperature for all nanoparticles synthesized over the](#page-17-0) range of 50-300 K. (a) bare $Fe₃O₄$, (b) gluAuMNP, (c) tioAuMNP, (d) cysAuMNP, and (e) [AuMNP. All nanoparticles demonstrate the same shape of decline with cysAuMNP and](#page-17-0) [gluAuMNP having the lowest magnetic saturation overall but still maintaining relatively high](#page-17-0) [saturation as opposed to diamagnetic product \(0 emu/g\)..](#page-17-0) 18

[Fig. S9. Langevin functions fitted to experimental data from magnetic hysteresis \(MH\) for](#page-18-0) [nanoparticle at 300 K. All black scatter-plot data corresponds to the MH loop measurements from](#page-18-0) [the vibrating sample magnetometer for each nanoparticle. Colored Langevin function fits](#page-18-0) [correspond to: \(a\) red for Fe](#page-18-0)₃O₄, (b) light blue for gluAuFe₃O₄, (c) green for tioAuFe₃O₄, (d) dark blue for hisAuFe₃O₄, and (e) yellow for cysAuFe₃O₄. Each Langevin fit was calculated using the standard equation $y = C * \coth z - 1z$, where $z = xs$. The values for *s* and *C* were found through [parameter estimation, with the overall agreement between the Langevin function and the](#page-18-0) experimental data indicating the presence of superparamagnetism in the sample. Reduced χ^2 values [are shown on the plot to indicate agreement between the fit and the experimental data, with values](#page-18-0) [<1 indicating a good fit...](#page-18-0) 19

[Fig. S10. Additional STEM images of the bare Fe](#page-19-0)₃O₄ nanoparticles in bright-field imaging mode. [All samples \(a-d\) were taken with a 30 kV accelerating voltage and 13 pA current. All scale bar](#page-19-0) insets correspond to 100 nm in length. [...](#page-19-0) 20

[Fig. S11. Additional STEM images for the tioAuFe](#page-20-0)₃O₄ nanoparticles. Images (a-c) were taken in [bright-field imaging mode and \(d\) was taken in high-angle annular diffraction \(HAADF\) mode.](#page-20-0) [All samples were imaged with 30 kV accelerating voltage and 13 pA current............................](#page-20-0) 21

[Fig. S12. Additional STEM images for the hisAuFe](#page-21-0)₃O₄ nanoparticles synthesized. All images (a[d\) were taken in bright-field mode with an accelerating voltage of 30 kV and a current of 13 pA.](#page-21-0)

[...](#page-21-0) 22

[Fig. S13. Additional STEM images for the cysAuFe](#page-22-0)₃O₄ nanoparticles. All images (a-d) were taken [in bright field mode with an accelerating voltage of 30 kV. Images \(a\) and \(d\) were taken with a](#page-22-0) [current of 50 pA, while images \(b\) and \(c\) were taken with a current of 13 pA.](#page-22-0) 23

[Fig. S14. Additional STEM images for the gluAuFe](#page-23-0)₃O₄ product synthesized. All images (a-d) were [taken in bright field imaging mode with an accelerating voltage of 30 kV and a current of 13 pA.](#page-23-0)

[...](#page-23-0) 24

[Fig. S15. Additional Raman and SERS spectra of](#page-24-0) *p*-NTP with and without the nanoparticles synthesized. (a) Full range $(1700-400 \text{ cm}^{-1})$ Raman and SERS spectrum of the analyte on its own (50 µM *p*[-NTP\) and then with the nanoparticles in solution. \(b\) Region of interest over the](#page-24-0) fingerprint peak $(\sim 1567 \text{ cm}^{-1})$ demonstrating the SERS enhancement when hisAuMNP, [cysAuMNP, and AuNP are applied to the natural Raman signal of 50 µM](#page-24-0) *p*-NTP. 25

[Fig. S16. Region of interest Raman/SERS spectrum over the 1080-1120 cm](#page-25-0)⁻¹ band demonstrating [the presence of a single peak in the dark red 50 µM](#page-25-0) *p*-NTP spectrum as opposed to splitting peaks [in cysAuMNP, hisAuMNP, and the AuNP, as well as the tioAuMNP to some extent. The splitting](#page-25-0) [phenomenon demonstrates the presence of a thiol-Au bond between the](#page-25-0) *p*-NTP and the Au nanoparticles. [..](#page-25-0) 26

[Fig. S17. Calibration curves for the Raman and SERS measurements on the portable Raman](#page-26-0) [spectrometer. The limit of detection \(LOD\) was calculated using the 3σ method. The LOD for the](#page-26-0) natural Raman signal of the p -NTP (a) was 566.5 μ M at the most intense peak (1577 cm⁻¹). The SERS LOD for *p*-NTP (b) when using cysAuMNP (nanoparticle with highest EF) was 5.42 μ M, [roughly 100x lower than the Raman LOD. The linear dynamic range \(c\) for this measurement is](#page-26-0) shown to be in the region of roughly 20-50 μ M with qualitative detection still achievable above [this region. All measurements were completed in triplicate...](#page-26-0) 27 [Section 1. Calculation of SERS enhancement factor..](#page-27-0) 28 [Section 2. Optimized geometries and computational settings used for all four ligands.](#page-30-0) 31

Table S1. Anthocynanin values for four independent trials on the *C. Canadensis* extract demonstrating an average anthocyanin concentration of $105 \pm 16 \mu M$.

Fig. S1. UV-vis absorption spectrum of the synthesized Au nanoparticle synthesized with *C. Canadensis* demonstrating a broad plasmon resonance centered around 540 nm.

Fig. S2. ATR-IR spectrum of citrate-capped Fe₃O₄ used as a template for Au loading. Six main bands are seen: (1) 535 cm^{-1} from Fe-O, (2) 1048^{-1} from C-O-C of the citrate ligand, (3) 1071 cm⁻¹ from C-O-C of the citrate ligand, (4) 1389 cm⁻¹ from Fe-COO (5) 1589 cm⁻¹ from Fe-COO (6) 3304 cm⁻¹ from O-H of the citrate.

Exp. Freq. $(Fe3O4)$	Theoretical Frequency [1, 2]	Vibrational Mode
535 cm ⁻¹	578 cm ⁻¹	$v(Fe-O)$
1048 cm ⁻¹	1020 cm^{-1}	δ (C-O-C)
1071 cm ⁻¹	1020 cm^{-1}	δ (C-O-C) ^{$\dot{}$}
1389 cm ⁻¹	1428 cm ⁻¹	$v(Fe-COO3)$
1589 cm ⁻¹	1521 cm ⁻¹	$v(Fe-COO2)$
3304 cm^{-1}	3126 cm ⁻¹	$v(O-H)$

Table S2. Compiled theoretical assignments for Fe₃O₄ IR-active vibrational modes

*: in part or totally contributed to by the citrate ligand, ν: stretching mode, δ: scissoring mode

Fig. S3. Annotated IR spectra for cysAuFe₃O₄ (left, yellow trace) and cysteamine powder (right, gray trace). Different simulated data (black trace) are seen due to the lack of protonation of the cysteamine in powdered form and the presence of an extra proton when dissolved in aqueous media. The lack of a 2075 cm-1 band (due to S-H stretching) in the cysAuMNP demonstrates the presence of an Au-S bond between the cysteamine and the Au nanoparticle. The simulated data for $\cos A u F e_3 O_4$ was obtained from the protonated form of cysteamine $(HS(CH₂)₂NH₃⁺)$ while the simulated data for the cysteamine powder was obtained from the neutral species $(HS(CH₂)₂NH₂)$. The annotated peaks are described in **Table S3**.

Table S3. Vibrational assignments for cysteamine present in cysAuFe₃O₄ and cysteamine powder. CysAuFe₃O₄ was simulated using a protonated, or basic, form of cysteamine, and the powder was simulated using the neutral species. Theoretical frequencies are chosen such that the vibrational modes of both are the same and are the closest wavenumber occurrence of each vibration to the protonated value. For example, if both a 691 cm⁻¹ and 800 cm⁻¹ $v(C-S)$ exist for the neutral species, the 691 $cm⁻¹$ is shown in the table as it is closer to 710 cm⁻¹ than 800 cm⁻¹ is.

#: thiol bonding mode, *: contributed to be the citrate-Fe3O⁴ core, ν: stretching mode, δ: scissoring mode, τ: on-axis rotational mode, ρ: rocking mode, ω: wagging mode

Fig. S4. Annotated IR spectra for tioAuFe₃O₄ (green trace) and tiopronin powder (gray trace) as well as the theoretical simulated spectra (black trace). Eight distinguishable peaks are found in the tioAuFe₃O₄ with four being attributable to Fe3O⁴ and the other four being attributable to the tiopronin powder. The lack of the 2528 cm-1 band due to thiol stretching indicates the presence of an Au-S in place of the S-H. The annotated peaks are described in **Table S4**.

Table S4. Vibrational assignments for the tiopronin present in tioAuFe₃O₄ and cysteamine powder. TioAuFe₃O₄ and tiopronin powder were simulated using the neutral tiopronin species.

Exp. Freq. (tioAuMNP)		Exp. Freq. (Powder) Theoretical Frequency	Vibrational Mode
535 cm $^{-1}$			$v(Fe-O)^*$
1048 cm ⁻¹			$v(C-O)^*$
1071 cm ⁻¹			$v(C-O)^*$
1200 cm^{-1}	1192 cm^{-1}	1326 cm ⁻¹	$v(N-H)$
1375 cm ⁻¹	1374 cm ⁻¹	1516 cm ⁻¹	$v(N-H), \delta(C-N-C)$
1389 cm ⁻¹			$v(Fe-COO^*)^*$
1544 cm ⁻¹	1550 cm^{-1}	1523 cm ⁻¹	$v(C-S)$
1589 cm ⁻¹			$v(Fe-COO^*)^*$
	2528 cm ⁻¹	2461 cm ⁻¹	$v(S-H)^{\#}$
2920 cm^{-1}	2940 cm^{-1}	2977 cm ⁻¹	$v(C-H)$
3304 cm ⁻¹			$v(O-H)^*$

#: thiol bonding mode, *: contributed to be the citrate-Fe3O⁴ core, ν: stretching mode

Fig. S5. Annotated IR spectra for hisAuFe₃O₄ (dark blue trace) and tiopronin powder (gray trace) as well as the theoretical simulated spectra (black trace). Eight distinguishable peaks are found in the his $AuFe₃O₄$ with five being attributable to Fe3O⁴ and the other three being attributable to the tiopronin powder. The annotated peaks are described in **Table S5**.

Table S5. Vibrational assignments for the histidine present in hisAuFe₃O₄ and histidine powder. The his $\overline{AuFe_3O_4}$ and histidine powder were simulated using the neutral histidine species.

Exp. Freq. (hisAuMNP)		Exp. Freq. (Powder) Theoretical Frequency	Vibrational Mode
533 cm^{-1}			$v(Fe-O)^*$
1048 cm ⁻¹			$v(C-O)$
1082 cm ⁻¹			$v(C-O)$
1367 cm ⁻¹			$v(Fe-COO2)$ [*]
1454 cm ⁻¹	1449 cm ⁻¹	1449 cm ⁻¹	imidazole ring deformation
1470 cm ⁻¹	1498 cm ⁻¹	1488 cm ⁻¹	imidazole ring deformation
1597 cm ⁻¹			$v(Fe-COO2)$ [*]
3010 cm^{-1}	3009 cm ⁻¹	3042 cm ⁻¹	$v(C-H)$
3304 cm ⁻¹			$v(O-H)^*$

*: contributed to be the citrate-Fe₃O₄ core, v: stretching mode

Fig. S6. Annotated IR spectra for gluAuFe₃O₄ (light blue trace) and tiopronin powder (gray trace) as well as the theoretical simulated spectra (black trace). Fourteen distinguishable peaks are found in the gluAuFe₃O₄ with four being attributable to $Fe₃O₄$ and the other ten being attributable to the tiopronin powder. The absence of the 2521 cm^{-1} band (S-H stretching) in the gluAuMNP demonstrates the presence of an Au-S bond between the glutathione and the Au. The annotated peaks are described in **Table S6**.

Table S6. Vibrational assignments for the glutathione present in gluAuFe₃O₄ and glutathione powder. GluAuFe₃O₄ and glutathione powder were simulated using the neutral glutathione species.

Exp. Freq. (gluAuMNP)	Exp. Freq. (Powder)	Theoretical Frequency	Vibrational Mode
533 cm^{-1}			$v(Fe-O)^*$
554 cm^{-1}	548 cm ⁻¹	484 cm ⁻¹	$\omega(O-H)$
1001 cm ⁻¹	1011 cm ⁻¹	1011 cm ⁻¹	$v(C-C)$
1048 cm ⁻¹			$v(C-O)$
1082 cm ⁻¹			$v(C-O)$
1213 cm ⁻¹	1242 cm ⁻¹	1225 cm ⁻¹	$v(C-O)$
1350 cm^{-1}	1333 cm ⁻¹	1347 cm ⁻¹	ω (C-H)
1390 cm^{-1}	1394 cm^{-1}	1407 cm ⁻¹	δ (C-N-C)
1456 cm ⁻¹	1452 cm ⁻¹	1509 cm ⁻¹	δ (H-C-H)
1517 cm ⁻¹	1534 cm ⁻¹	1548 cm ⁻¹	$v(C-N)$
1598 cm ⁻¹	-		$v(Fe-COO^*)^*$
1634 cm ⁻¹	1659 cm ⁻¹	1642 cm ⁻¹	$v(C=O)$
1706 cm ⁻¹	1710 cm^{-1}	1750 cm^{-1}	$v(C=O)$
-	2521 cm ⁻¹	2446 cm ⁻¹	$v(S-H)^{\#}$
3301 cm^{-1}			$v(O-H)^*$

#: thiol bonding mode, *: contributed to be the citrate-Fe3O4 core, ν: stretching mode, δ: scissoring mode, τ: on-axis rotational mode, ρ: rocking mode, ω: wagging mode

Fig. S7. Raman spectra of the full window $(1900-400 \text{ cm}^{-1})$ for all analytes annotated. (a) The overlay of all Raman spectra with the laser background (simply passing the laser through an empty vial), all clearly visible peaks are annotated. (b) The same overlay as (a), but the laser background is now subtracted from all samples and all clearly visible peaks are annotated.

Fig. S8. Magnetic saturation as a function of temperature for all nanoparticles synthesized over the range of 50-300 K. (a) bare $Fe₃O₄$, (b) gluAuMNP, (c) tioAuMNP, (d) cysAuMNP, and (e) AuMNP. All nanoparticles demonstrate the same shape of decline with cysAuMNP and gluAuMNP having the lowest magnetic saturation overall but still maintaining relatively high saturation as opposed to diamagnetic product (0 emu/g).

Fig. S9. Langevin functions fitted to experimental data from magnetic hysteresis (MH) for nanoparticle at 300 K. All black scatter-plot data corresponds to the MH loop measurements from the vibrating sample magnetometer for each nanoparticle. Colored Langevin function fits correspond to: (a) red for $Fe₃O₄$, (b) light blue for gluAuFe₃O₄, (c) green for tioAuFe₃O₄, (d) dark blue for hisAuFe₃O₄, and (e) yellow for cysAuFe₃O₄. Each Langevin fit was calculated using the standard equation $y =$ $c * (coth(z) - \frac{1}{z})$ $\frac{1}{z}$, where $z = \frac{x}{s}$ $\frac{x}{s}$. The values for *s* and *C* were found through parameter estimation, with the overall agreement between the Langevin function and the experimental data indicating the presence of superparamagnetism in the sample. Reduced χ^2 values are shown on the plot to indicate agreement between the fit and the experimental data, with values ≤ 1 indicating a good fit.

Fig. S10. Additional STEM images of the bare Fe₃O₄ nanoparticles in bright-field imaging mode. All samples (a-d) were taken with a 30 kV accelerating voltage and 13 pA current. All scale bar insets correspond to 100 nm in length.

Fig. S11. Additional STEM images for the tioAuFe₃O₄ nanoparticles. Images (a-c) were taken in bright-field imaging mode and (d) was taken in high-angle annular diffraction (HAADF) mode. All samples were imaged with 30 kV accelerating voltage and 13 pA current.

All images (a-d) were taken in bright-field mode with an accelerating voltage of 30 kV and a current of 13 pA.

Fig. S13. Additional STEM images for the cysAuFe₃O₄ nanoparticles. All images (a-d) were taken in bright field mode with an accelerating voltage of 30 kV. Images (a) and (d) were taken with a current of 50 pA, while images (b) and (c) were taken with a current of 13 pA.

Fig. S14. Additional STEM images for the gluAuFe₃O₄ product synthesized. All images (a-d) were taken in bright field imaging mode with an accelerating voltage of 30 kV and a current of 13 pA.

Fig. S15. Additional Raman and SERS spectra of *p*-NTP with and without the nanoparticles synthesized. (a) Full range (1700-400 cm⁻¹) Raman and SERS spectrum of the analyte on its own (50 μ M *p*-NTP) and then with the nanoparticles in solution. (b) Region of interest over the fingerprint peak $(\sim 1567 \text{ cm}^{-1})$ demonstrating the SERS enhancement when hisAuMNP, cysAuMNP, and AuNP are applied to the natural Raman signal of 50 µM *p*-NTP.

Fig. S16. Region of interest Raman/SERS spectrum over the 1080-1120 cm⁻¹ band demonstrating the presence of a single peak in the dark red 50 µM *p*-NTP spectrum as opposed to splitting peaks in cysAuMNP, hisAuMNP, and the AuNP, as well as the tioAuMNP to some extent. The splitting phenomenon demonstrates the presence of a thiol-Au bond between the *p*-NTP and the Au nanoparticles.

Fig. S17. Calibration curves for the Raman and SERS measurements on the portable Raman spectrometer. The limit of detection (LOD) was calculated using the 3σ method. The LOD for the natural Raman signal of the *p*-NTP (a) was 566.5 µM at the most intense peak (1577 cm^{-1}) . The SERS LOD for *p*-NTP (b) when using cysAuMNP (nanoparticle with highest EF) was 5.42 µM, roughly 100x lower than the Raman LOD. The linear dynamic range (c) for this measurement is shown to be in the region of roughly 20-50 µM with qualitative detection still achievable above this region. All measurements were completed in triplicate.

Section 1. Calculation of SERS enhancement factor.

To quantify the enhancement factor of our nanoparticle in the liquid phase, we made multiple mathematical approximations to simplify the calculations. The general equation that was used for these calculations was

(i)
$$
EF = \frac{N_{Raman} * I_{SERS}}{N_{SERS} * I_{Raman}}
$$

where N_{Raman} is the number of molecules probed during natural Raman, I_{Raman} is the intensity of that natural Raman signal, N_{SERS} is the number of molecules probed during SERS, and I_{SERS} is the intensity of that SERS signal. The figure below demonstrates the first of these approximations, where in panel (1) the excitation scenario is demonstrated whereby the portable Raman's 785 nm excitation creates a roughly cylindrical excitation zone within the borosilicate vial. Therefore, we make a cylindrical approximation for this excitation zone (**2**) in order to simplify calculations and determine that given the spot size of the laser $(25 \mu m)$ and the diameter of the vial (1 cm) , the volume of excitation would be 4.91×10^{-12} m³.

This value was then used to determine the number of molecules of both p -NTP and AuFe₃O₄ that would be located in this cylindrical excitation zone. To carry out this calculation, the following formula was used

(ii)
$$
N_{\text{molecule}} = C_{\text{molecule}} * V_{cyl} * N_A
$$

where N_{molecule} was the number of *p*-NTP molecules in the cylindrical zone, C_{molecule} was the concentration of p-NTP in solution (50 μ M or 50 μ mol/m³), V_{cyl} was the volume of the cylindrical excitation zone (4.91x10⁻¹² m³), and N_A was Avogadro's constant (6.022x10²³ mol⁻¹). From this equation one can see that the number of molecules of p -NTP in the cylindrical zone was 1.48×10^8 . This calculation in equation (**ii**) was carried out similarly for the AuFe₃O₄ nanoparticles where C_{molecule} was 0.15 g/m^3 , instead of 50 μ mol/m³ in the case of *p*-NTP. The value for N_{molecule} in this case was found to be 4.44×10^{11} g•AuFe₃O₄/mol, with the unwanted units in the final value (units should not include g or mol) meaning that the molecular weight of the AuFe₃O₄ (g/mol) must be divided out of this number to obtain the number of molecules of AuFe₃O₄. Using the %Au loading for the AuFe₃O₄ obtained, cysAuFe₃O₄ has an Au:Fe ratio of 0.081:1, or 0.24 Au in 3 Fe, and hisAuFe₃O₄ has an Au:Fe ratio of 0.360:1, or 1.08 Au in 3 Fe. This means that the molecular formula of cysAuFe₃O₄ would be essentially $Au_{0.24}Fe_3O_4$ (278.80 g/mol), and hisAuFe₃O₄ would have the formula $Au_{1.08}Fe_3O_4$ (444.26 g/mol). Factoring this into the number 4.44x10¹¹ $g \cdot \text{AuFe}_3\text{O}_4/\text{mol}$, we obtain 1.59x10⁹ molecules of cysAuFe₃O₄ and 9.98x10⁸ molecules of hisAuFe3O4. This is schematically represented below for clarity, where in panels (**3a**) and (**3b**) one can see the pictorial representations of this calculation in the cylindrical excitation zone.

While from N_{molecule} of *p*-NTP we immediately obtained the N_{Raman}, the N_{SERS} number has yet to be obtained as all that has been calculated was how many nanoparticles of $AuFe₃O₄$ are in the excitation zone. To identify the N_{SERS}, one must calculate the number of *p*-NTP molecules that would be contained in a SERS-active zone above the AuFe₃O₄.

This is shown schematically above, where in panel (**4a**) one can see that if the entire volume of the nanoparticle was used the value would be $4/3\pi r^3$, however only a 1 nm surface above the nanoparticle is actually SERS-active (**4b**), therefore the formula for that volume is

(iii)
$$
V_{\text{SERS}} = \frac{4}{3}\pi (r + 1 \times 10^{-9})^3 - \frac{4}{3}\pi r^3
$$

where *r* is the radius is the nanoparticle, with the first term $(r + 1x10^{-9})$ being the radius of the nanoparticle plus $1x10^{-9}$ m to account for a thickness of 1 nm above the surface. From the histograms obtained from STEM imaging, the *r* for cysAuFe₃O₄ is roughly 14.8 nm (14.8x10⁻⁹ m), and the *r* for hisAuFe₃O₄ is roughly 65.1 nm (65.1x10⁻⁹ m). Therefore, for cysAuFe₃O₄ the V_{SERS} is 2.94x10⁻²⁴ m³, and for hisAuFe₃O₄ is 5.41x10⁻²³ m³. This volume is then multiplied by the previous number of AuFe₃O₄ that would be found in this cylindrical zone $(1.59x10⁹$ for cysAuFe₃O₄ and 9.98x10⁸ for hisAuFe₃O₄) to determine the total SERS-active volume within the excitation zone. This was calculated to be a total volume of 4.67×10^{-15} m³ for the cysAuFe₃O₄ and 5.40x10⁻¹⁴ m³ for the hisAuFe₃O₄. Substituting these volumes into equation (ii) in place of V_{cyl} allows us to obtain the NsERS for both cysAuFe₃O₄ $(1.41x10^5)$ and hisAuFe₃O₄ $(1.63x10^6)$. To complete the parameters needed for equation (**i**) in order to calculate SERS EF, we simply obtain ISERS and I_{Raman} from the corresponding SERS and Raman spectra. The I_{SERS} was measured to be 259.5 counts for cysAuFe₃O₄ and 273.6 counts for hisAuFe₃O₄, with the I_{Raman} being 46.1 counts for the 50 μ M *p*-NTP. As previously stated, the N_{Raman} for 50 μ M *p*-NTP was found to be 1.48x10⁸ and the N_{SERS} for cysAuFe₃O₄ and hisAuFe₃O₄ were $1.41x10^5$ and $1.63x10^6$, respectively. Therefore, our SERS EF for cysAuFe₃O₄ was calculated as 5.91×10^3 , and the SERS EF for hisAuFe₃O₄ was calculated as $5.39x10^2$.

Section 2. Optimized geometries and computational settings used for all four ligands.

1. Tiopronin, B3LYP/6-311G.

Atom	Mass	\boldsymbol{x}	y	Z.
C	6.0	0.4703227643	0.1025178224	0.7495675075
C	6.0	1.5635511462	-0.6117405111	-0.0366550025
C	6.0	2.0886549628	0.2289648839	-1.1875263082
O	8.0	2.3126085012	1.4563557832	-1.0648369525
N	7.0	2.3055145629	-0.4246307161	-2.3616265716
C	6.0	2.8582325087		0.2676567888 -3.5135561251
C	6.0	2.9995830697	-0.7006754846	-4.6519440133
O	8.0	2.7142468000	-1.8989309776	-4.6070241697
O	8.0	3.4960483683	-0.0904518599	-5.7725766277
S	16.0	3.0562251667	-1.0812454064	1.0891315227
H	1.0	-0.4045486383	0.2705994540	0.1148525027
H	1.0	0.8236908670	1.0744909124	1.0905893675
H	1.0	0.1677475942	-0.4913424559	1.6102963630
H	1.0	1.2247130444	-1.5854378415	-0.3884872018
H	1.0	2.1594525955	-1.4191607168	-2.4545576619
H	1.0	3.8335604994	0.7057549803	-3.2838447246
H	1.0	2.2204059405	1.1011974610	-3.8169084454
H	1.0	3.5917976452	-0.7264886632	-6.5080287558
H	1.0	3.4179326013	0.2280365469	1.3544252968

2. Cysteamine neutral, B3LYP/6-311G.

3. Cysteamine protonated, B3LYP/6-311G.

4. Glutathione, B3LYP/6-311G.

5. Histidine, B3LYP/6-311G.

Atom	Mass	\boldsymbol{x}	y	Z.
C	6.0	$-1.9381642864 - 1.5077724201$		-0.7364225444
\overline{C}	60	-1.5738211505	-0.2251609807	-0.3677065973
N	7.0	-0.3235089906	-0.3743357426	0.2346511499
\mathcal{C}	6.0	0.0150247281	-1.7021963638	0.2032103451
N	7.0	-0.9434132742	-2.4236601053	-0.3788044555
\mathcal{C}	60	-2.2465723556	1.1022446162	-0.5293891563
C	60	-2.9905470237	1.6592970263	0.7508965253
\overline{C}	60	-4.3216806899	0.9467919531	0.9337113873
O		8.0 -5.4238094164	1.4867579770	0.8387586542
O	80	-4.2731809366	-0.4038232201	1.1929985574
N	7.0	-3.2298690627	3.0956424133	0.7288460035
H	10	-2.8260893187	-1.8228052804	-1.2544941380
H	1.0	0.2439851224	0.3633849566	0.6182266593
H	1.0	0.9372814534	-2.0818284096	0.6029756875
H	1.0	-2.9576609587	1.0515723033	-1.3555592536
H	1.0	-1.5075920438	1.8582872588	-0.8013078640
H	1.0	-2.3683375815	1.4289907945	1.6201604386
H	1.0	-3.3752509413	-0.7945435805	1.1711559573
H	1.0	-3.9537390225	3.3814690224	0.0815533360
H	$1.0-$	-2.3868642508	3.6445477817	0.6244293076

References

[1] M. Stoia, R. Istratie, and C. Păcurariu, "Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy," *Journal of Thermal Analysis and Calorimetry,* vol. 125, no. 3, pp. 1185-1198, 2016/09/01, 2016.
[2] M. Zarghani, and B. Akhla

M. Zarghani, and B. Akhlaghinia, "Fe3O4 magnetic nanoparticles (MNPs) as an efficient catalyst for selective oxidation of benzylic and allylic C–H bonds to carbonyl compounds with tert-butyl hydroperoxide," *RSC Advances,* vol. 6, no. 45, pp. 38592-38601, 2016.