Supplementary Information (SI) for RSC Applied Interfaces. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Dual function of precisely modified hydroxy-PS-*b*-PMMA as neutral layers and thin films for perpendicularly oriented lamella

Riku Mizusaki,^a Shinsuke Maekawa,^a Takehiro Seshimo,^b Takahiro Dazai,^b Kazufumi Sato,^b Kan Hatakeyama-Sato,^a Yuta Nabae^a and Teruaki Hayakawa^{a*}

*Corresponding author Email: hayakawa.t.ac@m.titech.ac.jp

^a School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-S8-36 Ookayama, Meguro-ku, Tokyo, Japan.

^b TOKYO OHKA KOGYO CO., LTD., 1590 Tabata, Samukawa-machi, Koza-gun, Kanagawa, Japan.

Fig. S1 ¹H NMR spectrum of ClC₆OTBS in CDCl₃.¹

Fig. S2 ¹H NMR spectrum of BP-(OTBS)₂ in CDCl₃.

Fig. S3 ¹³C NMR spectrum of BP-(OTBS)₂ in CDCl₃.

Fig. S4 ¹H NMR spectrum of DPE-(OTBS)₂ in CDCl₃.

Fig. S5 ¹³C NMR spectrum of DPE-(OTBS)₂ in CDCl₃.

Fig. S6 ¹H NMR spectrum of PS-(OTBS)₂-PMMA in CDCl₃ without TMS.

Fig. S7 ¹³C NMR spectrum of PS-(OTBS)₂-PMMA in CDCl₃.

Fig. S8 ¹H NMR spectrum of PS-(OH)₂-PMMA in CDCl₃ without TMS.

Fig. S9 ¹³C NMR spectrum of PS-(OH)₂-PMMA in CDCl₃.

Fig. S10 FT-IR spectra of (a) 6-chloro-1-hexanol, (b) ClC₆OTBS, (c) BP-(OTBS)₂ and (d) DPE-(OTBS)₂.

Fig. S11 FT-IR spectrum of PS-(OTBS)₂-PMMA.

Fig. S12 FT-IR spectrum of PS-(OH)₂-PMMA.

Fig. S13 SEC chromatogram of PS-(OTBS)₂-PMMA.

Fig. S14 SEC chromatogram of PS-(OH)₂-PMMA.

Fig. S15 1D SAXS profiles of (a) PS-(OTBS)₂-PMMA and (b) PS-(OH)₂-PMMA.

Fig. S16 (a) Cross-sectional and (b) tilted FE-SEM images of a PS- $(OH)_2$ -PMMA thin film applied onto a PS- $(OH)_2$ -PMMA neutral layer, which were annealed for 20 minutes. Both images were taken without the etching of PMMA domains.

Fig. S17 AFM phase images (20 μ m square, left, and 5 μ m square, right) of PS-(OH)₂-PMMA thin films (~ 30 nm) applied onto a PS-(OTBS)₂-PMMA neutral layer annealed for 30 minutes, exhibiting parallel orientation of lamellae.

Fig. S18 TG curves of PS-(OTBS)₂-PMMA (blue line) and PS-(OH)₂-PMMA (orange line). 5% weight loss temperatures are 350°C and 339°C, respectively.

annealed for 1 minute (~ 6 nm, left) and 30 minutes (~ 8 nm, right), accompanied by the cross-sectional height profiles (taken from the white line in the images) below. The values of root-mean-square surface roughness of each NLs are 0.31 nm and 0.28 nm, respectively.

Fig. S20 AFM phase images of a PS-(OH)₂-PMMA thin film that were directly cast onto a Si substrate and annealed at 250°C for 30 minutes (\sim 40 nm). Perpendicular orientation of lamellae was only partly observed.

References

1 J. Wu, S. Bo, J. Liu, T. Zhou, H. Xiao, L. Qiu, Z. Zhen and X. Liu, Chem. Commun., 2012, 48, 9637-9639.