**Supporting Information** 

## Surface Photovoltage Predicts Open Circuit Voltage in GaP/PEDOT:PSS and GaP/CuSCN Heterojunction Solar Cells

## Anna C. Kundmann\*<sup>a</sup>, Kathleen Becker<sup>a</sup>, and Frank E. Osterloh\*<sup>a</sup>

<sup>a</sup> Department of Chemistry, University of California, Davis. One Shields Avenue, Davis, CA, 95616, USA. Fax: (+1)530 752 8995; \*E-mail: <u>fosterloh@ucdavis.edu</u> (F.E.O.); \*Email: <u>ackundmann@ucdavis.edu</u> (A.C.K.)

6 pages



**Figure S1.** Scanning electron micrograph of a crack in an electrodeposited CuSCN film on an unpolished GaP wafer surface. The particles follow the rough contours of the GaP wafer.



**Figure S2.** Energy dispersive X-ray spectroscopy (EDS) of etched nGaP wafer (a), PEDOT:PSS– n-GaP (b), and CuSCN–n-GaP (c). The beam voltage and current were 5 kV and 1.6 nA, respectively.

Electron Image 3



**Figure S3.** Scanning electron micrograph of a CuSCN film on GaP with a metallic copper cluster visible. EDS was performed on the cluster area (Spectrum 6) and separate film area (Spectrum 7; values given in **Table S1**), confirming that the cluster primarily contains copper.

| Element | Cluster, Spectrum 6 (At%) | Film, Spectrum 7 (At%) |
|---------|---------------------------|------------------------|
| Cu      | 66.3                      | 11.0                   |
| S       | 9.7                       | 7.5                    |
| С       | 11.8                      | 16.7                   |
| Ν       | 6.2                       | 8.5                    |

**Table S1.** EDS results showing the atomic percent of elements in the CuSCN film in Figure S3.



**Figure S4.** Surface photovoltage spectrum of n-type GaP wafer with indium back contact and PEDOT:PSS hole transport layer (In/GaP/PEDOT:PSS) co-plotted with the logarithm of the light power of the monochromated Xe arc lamp at the sample position.



**Figure S5.** (a) Schematic side view of structure for n-GaP-based devices. Indium (In) is used as the back contact while silver paint is used as the front contact (Ag). Photograph of (b) champion PEDOT:PSS-based device, and of (c) champion CuSCN-based device. Scale bars are 1.00 cm.



**Figure S6.** *J-V* curves of second PEDOT:PSS–n-GaP (a) and CuSCN–n-GaP (b) devices in the dark (black line) and under simulated AM1.5G illumination (blue and orange lines, respectively).



**Figure S7.** Full cyclic voltammetry curves for PEDOT:PSS–n-GaP (a) and CuSCN–n-GaP (b). Light source was a Xe lamp adjusted to simulate AM1.5G illumination.



Figure S8. Surface photovoltage spectrum for a GaP wafer with In soldered on the back and annealed in 5%  $H_2$  in  $N_2$  for 10 min at 400 °C.