Electronic supplementary information

Supramolecular Chemistry in Solution and Solid-Gas Interfaces: Synthesis and Photophysical Properties of Monocolor and Bicolor Sensors for Barium Tagging in Neutrinoless Double Beta Decay Nuclear Reactions

Fernando Auria-Luna,^a Frank W. Foss Jr,^b Juan Molina-Canteras,^a Ivan Velazco-Cabral,^c Aimar Marauri,^{ad} Amaia Larumbe,^a Borja Aparicio,^{ae} Juan Luis Vázquez,^c Nerea Alberro,^a Iosune Arrastia,^a Virginia San Nacianceno,^a Adai Colom,^{fg} Carlos Marcuello,^d Benjamin J. P. Jones,^b David Nygren,^b Juan J. Gómez-Cadenas,^{fh} Celia Rogero,^{hi} Iván Rivilla,^{*fh} Fernando P. Cossío,^{*a} and the NEXT collaboration

^aDepartamento de Química Orgánica I and Centro de Innovación y Química Avanzada (ORFEO-CINQA), Facultad de Química/Kimika Fakultatea, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastian, Spain

^bDepartment of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States

^cDepartament of Chemistry, University of Guanajuato, 36050 Guanajuato, Gto, Mexico

^dBiofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain.

^ePresent address: Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain).

^fIkerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.

⁸Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Campus Universitario, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain.

^hDonostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Spain ⁱMaterials Physics Center (CSIC-UPV/EHU), San Sebastián, E-20018, Spain

NEXT Collaboration Author List:

C. Adams,¹ H. Almazán,² V. Álvarez,³ B. Aparicio,⁴ A.I. Aranburu,⁵ L. Arazi,⁶ I.J. Arnquist,⁷ F. Auria-Luna,⁴ S. Ayet,⁸ C.D.R. Azevedo,⁹ K. Bailey,¹ F. Ballester,³ M. del Barrio-Torregrosa,¹⁰ A. Bayo,¹¹ J.M. Benlloch-Rodríguez,¹⁰ F.I.G.M. Borges,¹² A. Brodolin,¹⁰ N. Byrnes,¹³ S. Cárcel,⁸ A. Castillo,¹⁰ S. Cebrián,¹⁴ E. Church,⁷ L. Cid,¹¹ C.A.N. Conde,¹² T. Contreras,¹⁵ F.P. Cossío,⁴ E. Dey,¹³ G. Díaz,¹⁶ T. Dickel,¹⁷ C. Echevarria,¹⁰ M. Elorza,¹⁰ J. Escada,¹² R. Esteve,³ R. Felkai,^{6a} L.M.P. Fernandes,¹⁸ P. Ferrario,^{10,19} A.L. Ferreira,⁹ F.W. Foss,²⁰ Z. Freixa,⁵¹⁹ J. García-Barrena,³ J.J. Gómez-Cadenas,^{10,19,b} R. González,¹⁰ J. Grocott,² R. Guenette,² J. Hauptman,²¹ C.A.O. Henriques,¹⁸ J.A. Hernando Morata,¹⁶ P. Herrero-Gómez,²² V. Herrero,² C. Hervés Carrete,¹⁶ Y. Ifergan,⁶ B.J.P. Jones,¹³ F. Kellerer,⁸ L. Larizgoitia,¹⁰ A. Larumbe,⁴ P. Lebrun,²³ F. López,¹⁰ N. López-March,⁸ R. Madigan,²⁰ R.D.P. Mano,¹⁸ A.P. Marques,¹² J. Martín-Albo,⁸ G. Martínez-Lema,⁶ M. Martínez-Vara,¹⁰ R. Miller,²⁰ K. Mistry,¹³ J. Molina-Canteras,⁴ F. Monrabal,^{10,19} C.M.B. Monteiro,¹⁸ F.J. Mora,³ K. Navarro,¹³ P. Novella,⁸ A. Nuñez,¹¹ D.R. Nygren,¹³ E. Oblak,¹⁰ J. Palacio,¹¹ B. Palmeiro,² A. Para,²³ I. Parmaksiz,¹³ A. Pazos,⁵ J. Pelegrin,¹⁰ M. Pérez Maneiro,¹⁶ M. Querol,⁸ A.B. Redwine,⁶ J. Renner,¹⁶ I. Rivilla,^{10,19} C. Rogero,²⁴ L. Rogers,¹ B. Romeo,¹⁰ C. Romo-Luque,⁸ F.P. Santos,¹² J.M.F. dos Santos,¹⁸ M. Seemann,¹⁰ I. Shomroni,²² P.A.O.C. Silva,¹⁸ V. San Nacienciano,⁴ A. Simón,¹⁰ S.R. Soleti,¹⁰ M. Sorel,⁸ J. Soto-Oton,⁸ J.M.R. Teixeira,¹⁸ S. Teruel-Pardo,⁸ J.F. Toledo,³ C. Tonnelé,¹⁰ J. Torrent,^{10,25} A. Trettin,² A. Usón,⁸ P.R.G. Valle,^{5,10} J.F.C.A. Veloso,⁹ J. Waiton² and A. Yubero-Navarro.¹⁰

¹Argonne National Laboratory, Argonne, IL 60439, USA

²Department of Physics and Astronomy, Manchester University, Manchester. M13 9PL, United Kingdom

³Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, E-46022, Spain

⁴Department of Organic Chemistry I, University of the Basque Country (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA), San Sebastián / Donostia, E-20018, Spain

⁵Department of Applied Chemistry, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, San Sebastian / Donostia, E-20018, Spain

⁶Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 8410501, Israel

⁷Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA

⁸Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, Paterna, E-46980, Spain

⁹Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), Universidade de Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal

¹⁰Donostia International Physics Center, BERC Basque Excellence Research Centre, Manuel de Lardizabal 4, San Sebastian / Donostia, E-20018, Spain

¹¹Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, Canfranc Estación, E-22880, Spain

¹²LIP, Department of Physics, University of Coimbra, Coimbra, 3004-516, Portugal

¹³Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA

^a Now at Weizmann Institute of Science, Israel.

^b NEXT spokesperson

¹⁴Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Calle Pedro Cerbuna, 12, Zaragoza, E-50009, Spain

¹⁵Department of Physics, Harvard University, Cambridge, MA 02138, USA

¹⁶Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Campus sur, Rúa Xosé María Suárez Núñez, s/n, Santiago de Compostela, E-15782, Spain

¹⁷II. Physikalisches Institut, Justus-Liebig-Universitat Giessen, Giessen, Germany

¹⁸LIBPhys, Physics Department, University of Coimbra, Rua Larga, Coimbra, 3004-516, Portugal

¹⁹Ikerbasque (Basque Foundation for Science), Bilbao, E-48009, Spain

²⁰Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA

²¹Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-3160, USA

²² Hebrew University, Edmond J. Safra Campus, Jerusalem, 9190401, Israel

²³Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

²⁴Centro de Física de Materiales (CFM), CSIC & Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 5, San Sebastián / Donostia, E-20018, Spain

²⁵Escola Politécnica Superior, Universitat de Girona, Av. Montilivi, s/n, Girona, E-17071, Spain

Table of Contents

1.	General Information	S 1
2.	Analytical Methods	S2
3.	Synthetic Procedures and Analytical Data	S 7
4.	NMR Spectra	S24
5.	Photophysical Properties	S93
6.	Computational Data	S113
7.	References	S138

1. General Information

All experiments requiring a dry atmosphere were performed using conventional vacuum line and Schlenk techniques. The commercial reagents were purchased from Sigma MERK (Sigma-Aldrich), TCI (Tokio Chemical Industry CO), abcr Gmbh and ACROS organics: 1-aza-18-crown-6-ether (TCI, >98%); tris(dibenzylideneacetone)dipalladium(0) (Aldrich, 99.8%); 2-(dicyclohexylphosphino)-2'-(dimethylamino)biphenyl (abcr, >97%); *N*-iodosuccinimide (Aldrich. 95%): >98%): 1.1'ammonium acetate (Aldrich. bis(diphenylphosphino)ferrocenepalladium (II) dichloride (Fluorochem, 98%); potassium phosphate tribasic (Aldrich, >98%); bromobenzene (Aldrich, 99%); sodium tert-butoxide (Aldrich, 97%); acetic acid, potassium salt (ACROS, 99%); bis(pinacolato)diboron (TCI, 99%); sodium hydroxide (Aldrich, 97%); *N*-hydroxysuccinimide (Aldrich, 98%); N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (Aldrich, commercial grade); triethanolamine (Aldrich, 98%); (3-aminopropyl)triethoxysilane (Aldrich, 98%); kryptofix 22 (Aldrich); benzyl bromide (abcr, 99%); cesium carbonate (Aldrich, 99%); methyl 2aminopyridine-4-carboxylate (Aldrich, 98%); methyl bromoacetate (Aldrich, 98%); phosphorous(V) oxychloride (Aldrich, 99%); hydriodic Acid (TCI, 57%); sodium iodide (Aldrich, 99%); potassium carbonate (Aldrich, 99%); 18-crown 6-ether (TCI, 99%); 1-fluoro-4nitrobenzene (Aldrich, 98%), 4-bromo-1,8-naphthalic anhydride (TCI, 99%); 1-metil-2pyrrolidinone (Aldrich, 99%); 11-aminoundecylethoxysilane (abcr, 99%); triethanolamine (Aldrich, 99%); and were used without further purification. MeOH (Methanol RA, Oppac); DMF (N,N-dimethylformamide, anhydrous 99,8%, MERCK); Hexane (95% alkanes mixture for synthesis, Panreac); CH₂Cl₂ (Diclorometano RA, Oppac); AcOEt (Etilo Acetato RA, Oppac); Acetone (VWR); MeCN (acetonitrile for HPLC, VWR); DMSO (dimethyl sulfoxide, VWR); toluene (VWR), acetone (VWR), ethanol (VWR).

2. Analytical Methods

Thin layer chromatographies (TLC) were performed on aluminum TLC plates (silica gel coated with flourescent indicator F254), and visualized either by exposure to UV light or staining with potassium permanganate or ninhydrine.

Column chromatographies were carried out with silica gel 60 (0.040- 0.063 mm).

Flash chromatographies were carried out using a Biotage Isolera four system, with Snap KP-Sil 10g cartridges.

Fourier Transform Infra-Red (FTIR) Spectroscopy spectra were recorded on an FT-IR spectrometer equipped with a diamond detection and single-reflection ATR module; wavenumbers are given in cm⁻¹.

Melting points (M.p.) were determined using a Büchi Melting Point B-560 apparatus.

Nuclear Magnetic Resonance Spectroscopy. ¹H NMR or ¹³C NMR spectra were recorded at 400 or 500 MHz and 101 or 126 MHz for ¹³C NMR, equipped with a z gradient BBOF probe, in CDCl₃. The data are reported as s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet or unresolved, br s = broad signal, coupling constant(s) in Hz, integration. The ¹H spectra were recorded using noesygppr1d sequence from Bruker's library at 500.13 MHz. A time domain of 64 k and a spectral width of 10000 Hz. Interpulse delay: 1 s. Adquistion time: 3 s. Number of scans: 64. Mixing time: 0.01 s.

Mass spectrometry (MS) and high-resolution mass spectrometry (HRMS). High-resolution mass spectra (HRMS) were recorded on HPLC Agilent 1200 Series system coupled to a hybrid quadrupole-time of flight (LC-QTOF) mass spectrometer Agilent 6530 from Agilent Technologies (Santa Clara, CA, USA). Mobile phase was composed by 0.1 % formic acid: acetonitrile 0.1% formic acid (50:50). Gas Temp. 325°C; Drying gas: 5 l/min; Nebulizer: 40 psig; Shealt gas Temp. 375 °C; Shealt gas flow: 11 l/min. Vcap: 3500 V(+).

Confocal Microscopy. Images were acquired using a Leica Stellaris5 confocal microscope (Leica Microsystems CMS GmbH, Germany) equipped with a TauSense module to acquire lifetime based images. Leica objective HC PL APO CS2 10x/0.40 DRY. Leica HyD detectors. Single-Photon counting mode (In photon counting mode, individual photons are resolved and counted with high fidelity, producing highly accurate and quantitative data). $\lambda_{exc.} = 405$ nm, Line Average = 16, Scan Speed = 400 Hz. Pixel Size = 0.024 µm. Physical Length = 24.22 µm. The LAS-X software, version 4.5.0.25531, was used to analyze the images and the open version (Suite X; 3.30.16799) (Leica Microsystems CMS GmbH, Germany). Average emission spectra (Figure 11, panels C and F) were obtained with the same setup.

As a control experiment, the same images shown in Figure 12 were acquired for a sample of compound **15aa** deposited by means of spin coating over ITO without adding Ba^{2+} . Images were recorded in both wavelength ranges to make sure that no background signal at 410-470 nm could be miss assigned as the sensor- Ba^{2+} complex (Figure S1).

Figure S1. Confocal microscopy images of compound **15aa** at the unbound and Ba²⁺-bound channels (see Figure 12, panels a to c, to compare).

Barium Sublimation. 3 g of Ba(CF₃SO₃)₂ (melting point: >300 °C) were sublimated over indium tin oxide (ITO) surfaces with an Aldrich[®] sublimation apparatus Z221171 refrigerated with a water flow and connected to a vacuum pump providing 0.43 mbar, heating at ca. 280 °C for 24 h. After completion, surfaces were kept under an Ar atmosphere until their characterization (Figure S2).

Figure S2. Sublimation system.

UV/Vis and Fluorescence Spectroscopy. Uv-vis spectra were acquired on a Cary 4000 UV-Vis Spectrophotometer. Emission spectra in solid state and in solution were acquired on an Edinburgh Instruments FLS1000 Spectrophotometer (Edinburgh, Scotland, UK), accuracy \pm 0.2 nm. Quantum Yields were acquired with the Integrating Sphere accessory. Lifetimes were acquired with a picosecond pulsed diode laser EPL-485 nm (Edinburgh, Scotland, UK) and a picosecond pulsed light emitting diode EPLED-340 nm (Edinburgh, Scotland, UK). The spectra were recorded using Starna precision cell made of quartz with a path-length of 1 cm. All solutions were prepared with spectrophotometric grade MeCN in concentrations between $1 \cdot 10^{-4}$ and $1 \cdot 10^{-7}$ M, depending on linearity studies. Spectra of chelated fluorescent sensors were acquired by adding 1 equivalent of Ba(ClO₄)₂. To construct the Job's plot different proportion of stock solutions of fluorescent sensors and Ba(ClO₄)₂ were mixed and registered, after 1 min of equilibration time.

Spin coating. Experiments were performed in a MB-SC-210 (MBRAUN) apparatus integrated into the Globe Box or in a NOVOSPIN C-series model SCC-200 apparatus coupled to a vacuum pump Linicon LV-125A.

Activation of ITO surfaces. ITO coating glass was activated by O₂-plasma-Ar (Diener Low pressure plasma machine of type Pico).

Binding constant determination. All the binding constants shown in Table 2 were calculated following the procedure described in the main manuscript. As an example, absorption data corresponding to compound **7ba**, together with its linear fitting using eq. (5), are shown below (Figure S3).

Figure S3. (A) Absorption spectra of compound **7ba** in the presence of different equivalents of Ba²⁺. (B) Linear fitting of the terms included in eq. (5) to determine the binding constant K_b for **7ba**.

Limit of Detection (LOD). To obtain the LOD values of the sensors, titration experiments were performed, in which increasing concentrations of Ba(ClO₄)₂ were added to a solution 10 μ M of the molecule under study. Then, (I_{λ max}/I_{0 λ max}) vs. [Ba²⁺] in the case of the monocolor series and (I_{λ bound}/I_{λ free}) vs. [Ba²⁺] in the case of bicolor series were plotted. Finally, a linear fitting was performed and the slope values were used together with the pertinent standard deviation to obtain the detection limits shown below (Table S1).¹

Table S1 Limits of Detection (LODs) for compounds 7aa-bb, 14a,b and 15aa-bb.

Sancor	LOD	LOD
Sensor	$[\mu M]^{[a]}$	[ppb]
7 aa	0.228	31.37
7ab	0.351	48.24

7ba	0.077	10.53
7bb	0.059	8.14
14a	0.281	38.62
14b	0.392	53.81
15 aa	0.226	31.09
15ab	0.127	17.50
15ba	0.187	25.69
15bb	0.194	26.61

^[a]Calculated as LOD = $3\sigma / k$, where σ is the standard deviation and k is the slope of the linear fit, respectively.

Scratch test. The scratching experiments were carried out using a *JPK Nanowizard UltraSpeed AFM* equipped with a *Super Sharp Silicon*TM (SSS-NCHR-10) AFM probe, with a nominal spring constant between 20 N/m. The AFM probe was calibrated to ascertain the deflection sensitivity and spring constant values by running force-distance curves on a stiff quartz surface and by the thermal tune.² The images were taken in contact mode, and the set point applied for the scratching experiment was 3500 nN, which is enough to remove the organic and ITO layers and maintain the quartz surface without damage. The resonance frequency of the AFM lever was settled at 60 KHz. Scratching was done by passing five times per area. Five different areas of 500 nm x 500 nm were scratched in each sample, and images after the experiment were 4 μ m x 4 μ m in a resolution of 256 x 256 pixels/frame. The raw gathered data was processed using ImageJ 2.14. software tool (Figure 4).³

3. Synthetic Procedures and Analytical Data

Synthesis of compounds 2a and 2b.

Compounds **2a** and **2b** were obtained following a modified procedure described by Sibert et al.⁴ (**Scheme S1**) Spectral data for compound **2a** are consistent with the previously reported values.⁴

Scheme S1. Synthesis of compounds 2a and 2b.

To a microwave sealable glass vial equipped with a magnetic stirrer, the corresponding crown ether **1** (1.0 mmol, 1.0 equiv.), Cs_2CO_3 (325.8 mg, 1.0 mmol, 1.0 equiv.), 2.5 mL of DMF and 1-fluoro-4-nitrobenzene (106 μ L, 1.0 mmol, 1.0 equiv.) were added sequentially. The vial was sealed, purged with argon, heated to 100 °C in an oil bath and stirred overnight.

Purification: The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The crude was then dissolved in 50 mL of AcOEt and washed with Brine (3x50 mL). The organic fraction was collected, dried over MgSO₄, filtered and evaporated under reduced pressure. Finally, the resulting oil was further purified by column chromatography on silica gel and a gradient of polarity from CH_2Cl_2 to a CH_2Cl_2 :MeOH mixture (9:1), affording the corresponding final adducts **2a** and **2b**.

16-(4-Nitrophenyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane 2a.

Following the general procedure, compound **2a** was obtained as a yellow oil in 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.06 (m, 2H), 6.70 – 6.62 (m, 2H), 3.76 – 3.61 (m, 24H).

7-(4-Nitrophenyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane 2b.

Following the general procedure, compound **2b** was obtained as a yellow oil in 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.04 (m, 2H), 6.65 – 6.58 (m, 2H), 3.83 – 3.58 (m, 20H), 2.88 (t, *J* = 4.7 Hz, 4H). ¹³C-NMR (101 MHz, CDCl₃) δ 152.9, 137.1, 126.5, 110.3, 70.5, 70.4, 69.5, 68.5, 51.1, 49.2. IR(solid) v_{max} 2865, 1594, 1480, 1312, 1105, 824, 751. cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₁₈H₂₉N₃O₆, 383.2056; found, 383.2056.

Synthesis of compounds 4a and 4b.

Compounds **4a** and **4b** were obtained following a modified procedure described by Thapa et al.⁵ (**Scheme S2**) Spectral data for compounds **4a** and **4b** are consistent with the previously reported values.⁵

Scheme S2. Synthesis of compounds 4a and 4b.

The corresponding nitro compound **2** (0.5 mmol, 1.1 equiv.) was reduced using a ThalesNano hydrogenation flow reactor (2.5 mM, Pd/C, 1 atm, 30 °C, 1 mL/min) using methanol as the solvent and pouring the product directly over a round bottom flask charged with 4-bromo-1,8-naphthalic anhydride (124.7 mg, 0.45 mmol, 1.0 equiv.). The solvent was removed under reduced pressure and the crude was dissolved in 2 mL of EtOH, transferred to a microwave sealable glass vial equipped with a magnetic stirrer, sealed, heated to 77 °C in an oil bath and stirred overnight.

Purification: The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then, the crude was further purified by column chromatography on silica gel and a gradient of polarity from CH_2Cl_2 to a CH_2Cl_2 :MeOH mixture (9:1), affording the corresponding final adducts **4a** and **4b**.

2-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-bromo-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione 4a.

Following the general procedure, compound **4a** was obtained as a yellow solid in 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (dd, *J* = 7.3, 1.3 Hz, 1H), 8.61 (dd, *J* = 8.5, 1.3 Hz, 1H), 8.45 (d, *J* = 7.9 Hz, 1H), 8.06 (d, *J* = 7.9 Hz, 1H), 7.87 (dd, *J* = 8.6, 7.3 Hz, 1H), 7.10 (d, *J* = 9.0 Hz, 2H), 6.79 (d, *J* = 9.1 Hz, 2H), 3.82 – 3.52 (m, 24H).

2-(4-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)-6-bromo-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione 4b.

Following the general procedure, compound **4b** was obtained as a yellow solid in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, *J* = 7.3, 1.3 Hz, 1H), 8.62 (dd, *J* = 8.6, 1.3 Hz, 1H), 8.45 (d, *J* = 7.9 Hz, 1H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.87 (dd, *J* = 8.6, 7.3 Hz, 1H), 7.11 (d, *J* = 9.0 Hz, 2H), 6.81 (d, *J* = 9.1 Hz, 2H), 3.82 – 3.52 (m, 20H), 3.09 – 2.87 (m, 4H).

Synthesis of compound 4c.

Compound **4c** was obtained following a modified procedure described by Thapa et al.⁵ (Scheme S3)

Scheme S3. Synthesis of compound 4c.

To a microwave sealable glass vial equipped with a magnetic stirrer, amine derivative **4b** (61.2 mg, 0.1 mmol, 1.0 equiv.), Cs_2CO_3 (32.5 mg, 0.1 mmol, 1.0 equiv.) and 1.0 mL of acetonitrile were added sequentially. The vial was sealed, purged with argon and benzyl bromide (13 µL, 0.11 mmol, 1.1 equiv.) was added dropwise to the mixture. The reaction was stirred at room overnight.

Purification: The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The crude was further purified by column chromatography on silica gel and a gradient of polarity from CH_2Cl_2 to a CH_2Cl_2 :MeOH mixture (9:1), affording the corresponding final adduct **4c**.

2-(4-(16-Benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)-6-bromo-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione 4c.

Following the general procedure, compound **4c** was obtained as a yellow solid in 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, *J* = 7.3, 1.3 Hz, 1H), 8.62 (dd, *J* = 8.5, 1.3 Hz, 1H), 8.46 (d, *J* = 7.9 Hz, 1H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.87 (dd, *J* = 8.6, 7.3 Hz, 1H), 7.50 – 7.15 (m, 6H), 7.11

(d, J = 9.0 Hz, 2H), 6.79 (d, J = 9.1 Hz, 2H), 3.83 – 3.54 (m, 20H), 2.84 (t, J = 5.8 Hz, 4H). ¹³C-NMR (101 MHz, CDCl₃) δ 164.3, 148.2, 139.8, 133.5, 132.5, 131.7, 131.3, 130.9, 130.5, 129.5, 129.2, 129.0, 128.3, 128.3, 127.0, 123.6, 123.0, 122.8, 111.9, 71.2, 70.8, 70.4, 68.9, 60.0, 53.9, 51.6. IR(solid) v_{max} 2974, 2866, 1601, 1354, 1316, 1282, 1110, 812, 654. cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₃₇H₄₀BrN₃O₆, 701.2100; found, 701.2131. m.p.: 124-126 °C.

Synthesis of compounds 6a and 6b.

Compounds **6a** and **6b** were obtained following a modified procedure described by Chen et al.⁶ (Scheme S4)

Scheme S4. Synthesis of compounds 6a and 6b.

To a round bottom flask equipped with a magnetic stirrer, 30 mL of toluene, the corresponding triethoxysilane derivative **5** (18.80 mmol, 1.0 equiv.), triethanolamine (2.5 mL, 2800 mg, 18.80 mmol, 1.0 equiv.), 14.2 mL of MeOH and NaOH (7.5 mg, 0.19 mmol, 0.01 equiv.) were added sequentially. The reaction was heated to 80 °C in an oil bath and stirred for 24 h.

Purification: The reaction mixture was cooled to room temperature and the solvent was removed under reduced presure. Then, the crude was washed with *n*-hexane (3x50 mL) and filtered. Finally, the residual solvent was evaporated under reduced pressure, affording the corresponding final adducts **6a** and **6b**.

3-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propan-1-amine 6a.

Following the general procedure, compound **6a** was obtained as a white solid in 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.75 (t, *J* = 5.8 Hz, 6H), 2.79 (t, *J* = 5.8 Hz, 6H), 2.61 (t, *J* = 6.9 Hz, 2H), 1.59 – 1.44 (m, 2H), 0.44 – 0.34 (m, 2H). ¹³C-NMR (101 MHz, CDCl₃) δ 57.9, 51.3, 45.6, 29.8, 13.1. IR(solid) ν_{max} 3355, 3287, 2921, 2876, 2857, 1276, 1118, 716, 612 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₉H₂₀N₂O₃Si, 232.1243; found, 232.1247. m.p.: 80-81 °C.

11-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecan-1-amine 6b.

Following the general procedure, compound **6b** was obtained as a white solid in 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.76 (t, *J* = 5.8 Hz, 6H), 2.79 (t, *J* = 5.8 Hz, 6H), 2.67 (t, *J* = 7.0 Hz, 2H), 1.56 – 1.10 (m, 20H), 0.51 – 0.32 (m, 2H). ¹³C-NMR (101 MHz, CDCl₃) δ 58.1, 51.4, 42.5, 34.2, 29.9, 29.7, 27.1, 25.2, 16.6. IR(solid) ν_{max} 2919, 2851, 1567, 1466, 1088, 1026, 687 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₁₇H₃₆N₂O₃Si, 344.2495; found, 344.2504. m.p.: 73-75 °C.

Synthesis of compounds 7aa-7bb.

Compounds **7aa-7bb** were obtained following a modified procedure described by Thapa et al.⁵ (Scheme S5)

Scheme S5. Synthesis of compounds 7aa-7bb.

To a microwave sealable glass vial equipped with a magnetic stirrer, the corresponding naphtalimide derivative **4a** or **4c** (0.2 mmol, 1.0 equiv.), 0.25 mL of *N*-methylpyrrolidone and the corresponding silatrane derivative **6a** or **6b** (0.2 mmol, 2.0 equiv.) were added sequentially. The vial was sealed, purged with argon, heated to 120 °C in an oil bath and stirred overnight.

Purification: The reaction mixture was cooled to room temperature. The crude was dissolved in 50 mL of AcOEt and washed with Brine (3x50 mL). The organic fraction was collected, dried over MgSO₄, filtered and evaporated under reduced pressure. Finally, the resulting solid was further purified by column chromatography on silica gel and a gradient of polarity from CH_2Cl_2 to a CH_2Cl_2 :MeOH mixture (9:1), affording the corresponding final adducts **7aa-7bb**.

2-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-((3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)amino)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione 7aa.

Following the general procedure, compound **7aa** was obtained as a yellow solid in 4% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (dd, *J* = 7.4, 1.1 Hz, 1H), 8.46 (d, *J* = 8.5 Hz, 1H), 8.16 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.57 (dd, *J* = 8.4, 7.3 Hz, 1H), 7.11 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 9.3 Hz, 2H), 6.73 (d, *J* = 8.6 Hz, 1H), 5.96 (s, 1H), 3.81 (t, *J* = 5.8 Hz, 6H), 3.77 – 3.59 (m, 24H), 3.51 – 3.29 (m, 2H), 2.85 (t, *J* = 5.8 Hz, 6H), 1.93 (p, *J* = 6.6 Hz, 2H), 0.61 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 164.9, 150.5, 147.7, 135.2, 131.4, 130.5, 129.4, 128.4, 126.6, 124.2, 123.5, 120.5, 112.0, 109.5, 104.3, 71.0, 70.9, 70.8, 68.8, 57.8, 51.7, 51.2, 46.5, 29.8, 23.8, 13.3. IR(solid) v_{max} 3359, 2865, 1688, 1645, 1574, 1516, 1385, 1093, 756 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₃₉H₅₂N₄O₁₀Si, 764.3453; found, 764.3443. m.p.: 91-94 °C.

2-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-((11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)amino)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione 7ab.

Following the general procedure, compound **7ab** was obtained as a yellow solid in 9% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.61 (dd, *J* = 7.3, 1.1 Hz, 1H), 8.50 (d, *J* = 8.4 Hz, 1H), 8.11 (dd, *J* = 8.6, 1.1 Hz, 1H), 7.64 (dd, *J* = 8.5, 7.2 Hz, 1H), 7.11 (d, *J* = 9.0 Hz, 2H), 6.77 (d, *J* = 9.2 Hz, 2H), 6.74 (d, *J* = 8.5 Hz, 1H), 5.26 (t, *J* = 10.2 Hz, 1H), 3.82 – 3.61 (m, 30H), 3.49 – 3.32 (m, 2H), 2.79 (t, *J* = 5.8 Hz, 6H), 1.81 (p, *J* = 7.6 Hz, 2H), 1.49 (p, *J* = 6.9 Hz, 2H), 1.40 – 1.24 (m, 14H), 0.50 – 0.36 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 165.5, 164.9, 149.7, 147.7, 135.0, 131.6, 130.4, 129.3, 126.0, 124.8, 124.1, 123.7, 120.4, 112.0, 110.6, 104.5, 71.1, 71.0, 70.9, 68.8, 58.1, 51.7, 51.3, 43.9, 34.1, 29.7, 29.7, 29.6, 29.6, 29.5, 29.2, 27.3, 25.2, 16.6. IR(solid) v_{max} 2920, 2853, 1654, 1578, 1518, 1357, 1100, 775 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₄₇H₆₈N₄O₁₀Si, 876.4705; found, 876.4693. 95-100 °C (dec.).

6-((3-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)amino)-2-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione 7ba.

Following the general procedure, compound **7ba** was obtained as a yellow solid in 37% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, *J* = 7.3, 1.1 Hz, 1H), 8.46 (d, *J* = 8.4 Hz, 1H), 8.16 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.57 (dd, *J* = 8.4, 7.3 Hz, 1H), 7.43 – 7.23 (m, 5H), 7.11 (d, *J* = 9.0 Hz, 2H), 6.76 (d, *J* = 9.1 Hz, 2H), 6.73 (d, *J* = 8.6 Hz, 1H), 5.97 (t, *J* = 4.8 Hz, 1H), 3.81 (t, *J* = 5.9 Hz, 6H), 3.77 – 3.55 (m, 22H), 3.40 (td, *J* = 6.7, 4.9 Hz, 2H), 2.85 (t, *J* = 5.8 Hz, 10H), 2.03 – 1.82 (m, 2H), 0.61 (t, *J* = 7.6 Hz, 2H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.6, 164.9, 150.5, 147.7, 135.2, 131.4, 130.5, 129.4, 128.4, 127.2, 126.6, 124.4, 124.2, 123.5, 120.5, 111.9, 109.4, 104.3, 71.1, 70.7, 69.8, 69.0, 59.8, 57.8, 53.7, 51.6, 51.1, 46.5, 23.8, 13.3. IR(solid) v_{max} 3321, 2870, 1638, 1577, 1518, 1360, 1094, 773. cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₄₆H₅₉N₅O₉Si, 853.4082; found, 853.4084. m.p.: 95-100 °C (dec.).

6-((11-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)amino)-2-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione 7bb.

Following the general procedure, compound **7bb** was obtained as a yellow solid in 27% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 7.3 Hz, 1H), 8.50 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 8.5 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 2H), 7.47 – 7.19 (m, 5H), 7.11 (d, *J* = 8.9 Hz, 2H), 6.88 – 6.64 (m, 3H), 5.29 (t, *J* = 5.3 Hz, 1H), 3.85 – 3.53 (m, 22H), 3.49 – 3.32 (m, 2H), 2.87 (s, 4H), 2.79 (t, *J* = 5.8 Hz, 6H), 1.80 (q, *J* = 7.4 Hz, 2H), 1.47 – 1.24 (m, 16H), 0.54 – 0.31 (m, 2H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.5, 164.9, 149.7, 147.8, 135.0, 131.6, 130.4, 129.4, 129.2, 128.4, 127.1, 126.1, 124.8, 124.2, 123.7, 120.4, 111.9, 110.6, 104.5, 71.1, 70.8, 69.0, 58.1, 53.8, 51.6, 51.3, 43.9, 34.1, 29.8, 29.7, 29.7, 29.6, 29.5, 29.2, 27.3, 25.2, 16.6. IR(solid) v_{max} 3361, 2921, 2853, 1688, 1646, 1576, 1518, 1357, 1100, 727. cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₅₄H₇₅N₅O₉Si, 965.5334; found, 965.5342. m.p.: 95-100 °C (dec.).

Synthesis of compounds 8a and 8b.

Compounds **8a** and **8b** were obtained following a modified procedure described by Buchwald & Zhang.⁷ (**Scheme S6**) Spectral data for compound **8a** are consistent with the previously reported values.⁸

Scheme S6. Synthesis of compounds 8a and 8b.

To a round bottom flask equipped with a magnetic stirrer, $Pd_2(dba)_3$ (232.6 mg, 0.254 mmol, 0.02 equiv.), DavePhos (300.8 mg, 0.764 mmol, 0.06 equiv.), the corresponding crown ether **1** (12.74 mmol, 1.0 equiv.), t-BuONa (1836.5 mg, 19.11 mmol, 1.5 equiv.), 100 mL of toluene and Bromobenzene (1333 µL, 12.74 mmol, 1.5 equiv.) were added sequentially. The mixture was heated to 100 °C in an oil bath and stirred overnight.

Purification: The reaction mixture was cooled to room temperature, filtered through a celite pad and the solvent was removed under reduced pressure. The crude was then dissolved in 50 mL of AcOEt and washed with Na_2CO_3 (sat.) (3x50 mL) and Brine (3x50 mL). The organic fraction was collected, dried over MgSO₄, filtered and evaporated under reduced pressure, affording the corresponding final adducts **8a** and **8b**.

N-Phenyl-1-aza-18-crown-6 8a.

Following the general procedure, compound **8a** was obtained as a brown oil in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, J = 8.8, 7.2 Hz, 2H), 6.72 – 6.61 (m, 3H), 3.74 – 3.57 (m, 24H).

N-Phenyl-1,10-diaza-18-crown-6 8b.

Following the general procedure, compound **8b** was obtained as a brown oil in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.12 (m, 2H), 6.76 – 6.58 (m, 3H), 3.75 – 3.55 (m, 22H), 2.98 (s, 1H), 2.86 – 2.74 (m, 4H). ¹³C-NMR (101 MHz, CDCl₃) δ 148.02, 129.38, 116.11, 111.92, 70.65, 70.51, 70.37, 68.87, 50.81, 49.38. IR(solid) ν_{max} 2865, 1597, 1505, 1350, 1107, 908, 725. cm⁻¹. HRMS (ESI) (m/z): [M+H⁺] calcd. for C₁₈H₃₁N₂O₄, 339.2278; found, 339.2273.

Synthesis of compounds 9a and 9b.

Compounds **9a** and **9b** were obtained following a modified procedure described by Das et al.⁹ (Scheme S7)

Scheme S7. Synthesis of compounds 9a and 9b.

To a round bottom flask equipped with a magnetic stirrer, the corresponding crown ether derivative **8** (8.00 mmol, 1.0 equiv.), NH₄OAc (61.7 mg, 0.800 mmol, 0.1 equiv.), 100 mL of MeCN and *N*-iodosuccinimide (1889.9 mg, 8.40 mmol, 1.05 equiv.) were added sequentially. The reaction was heated in an oil bath to 82 °C and stirred for 2 h.

Purification: The reaction mixture was cooled to room temperature and washed with Na_2CO_3 (sat.) (3x100 mL) and Brine (3x100 mL). The organic fraction was collected, dried over MgSO₄, filtered and evaporated under reduced pressure, affording the corresponding final adducts **9a** and **9b**.

N-(4-iodophenyl)-1-aza-18-crown-6 9a.

Following the general procedure, compound **9a** was obtained as a black oil in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 2H), 6.51 – 6.43 (m, 2H), 3.71 – 3.53 (m, 24H). ¹³C-NMR (101 MHz, CDCl₃) δ 147.6, 137.8, 114.2, 76.5, 71.0, 68.6, 51.4. IR(solid) ν_{max} 2974, 2866, 1765, 1602, 1354, 1109, 813, 654 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₁₈H₂₈INO₅, 465.1012; found, 465.1010.

N-(4-iodophenyl)-1,10-diaza-18-crown-6 9b.

Following the general procedure, compound **9b** was obtained as a black oil in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.34 (m, 2H), 6.53 – 6.38 (m, 2H), 3.73 – 3.50 (m, 22H), 2.87 – 2.76 (m, 4H), 2.45 (s, 1H). ¹³C-NMR (101 MHz, CDCl₃) δ 147.7, 137.9, 114.2, 76.7, 70.7, 70.6, 70.5, 68.6, 50.8, 49.4. IR(solid) ν_{max} 2866, 1586, 1495, 1107, 907, 725. cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₁₈H₂₉IN₂O₄, 464.1172; found, 464.1165.

Synthesis of compound 9c.

Compound **9c** was obtained following a modified procedure described by Thapa et al.⁵ (**Scheme S8**)

Scheme S8. Synthesis of compound 9c.

To a microwave sealable glass vial equipped with a magnetic stirrer, N-(4-iodophenyl)-1,10diaza-18-crown-6 **9b** (341.7 mg, 0.736 mmol, 1.0 equiv.), Cs₂CO₃ (239.8 mg, 0.736 mmol, 1.0 equiv.) and 7.5 mL of CH_2Cl_2 were added sequentially. The vial was sealed, purged with argon and benzyl bromide (87.5 μ L, 0.736 mmol, 1.0 equiv.) was added dropwise to the mixture. The reaction was stirred at room temperature overnight.

Purification: The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The crude was further purified by column chromatography on silica gel and a gradient of polarity from CH_2Cl_2 to a CH_2Cl_2 :EtOAc mixture (1:1), affording the corresponding final adduct **9c**.

7-Benzyl-16-(4-iodophenyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane 9c.

Following the general procedure, compound **9c** was obtained as a pale yellow oil in 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.38 (m, 2H), 7.38 – 7.13 (m, 5H), 6.54 – 6.38 (m, 2H), 3.71 – 3.53 (m, 22H), 2.81 (t, *J* = 5.9 Hz, 4H). ¹³C-NMR (101 MHz, CDCl₃) δ 163.5, 147.6, 139.7, 137.9, 129.0, 128.3, 127.0, 114.2, 71.2, 70.8, 70.3, 68.8, 60.0, 53.9, 51.4. IR(solid) v_{max} 2861, 1585, 1494, 1350, 1110, 802, 733, 698. cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₂₅H₃₅IN₂O₄, 554.1642; found, 554.1633.

Synthesis of compounds 10a and 10b.

Compounds **10a** and **10b** were obtained following a modified procedure described by Ishiyama et al.¹⁰ (**Scheme S9**)

Scheme S9. Synthesis of compounds 10a and 10b.

To a microwave sealable glass vial equipped with a magnetic stirrer, $PdCl_2(dppf)$ (22.0 mg, 0.03 mmol, 0.03 equiv.), bis(pinacolato)diboron (279.3 mg, 1.00 mmol, 1.1 equiv.), KOAc (294.42 mg, 3.00 mmol, 3.0 equiv.), 6.0 mL of DMSO and the corresponding crown ether derivative **9**

(1.0 mmol, 1.0 equiv.) were added sequentially. The vial was sealed, purged with argon and stirred at 80 °C overnight.

Purification: The reaction crude was cooled to room temperature, 50 mL of brine were added and the mixture was extracted with Et_2O (3x50 mL). The combined organic fractions were washed with Na_2CO_3 (sat.) (3x150 mL), NH₄Cl (sat.) (3x150 mL) and Brine (3x150 mL). Then, the organic fraction was collected, dried over MgSO₄ and filtered. Compound **10b** is used in the next step without further purification. Finally, the resulting oil was further purified by column chromatography on silica gel with a mixture of n-hexane:EtOAc and a gradient of polarity from (6:4) to pure EtOAc, affording the corresponding final adduct **10a**.

N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-aza-18-crown-6 10a.

Following the general procedure, compound **10a** was obtained as a pale yellow oil in 63% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.61 (m, 2H), 6.67 – 6.62 (m, 2H), 3.71 – 3.62 (m, 24H), 1.30 (s, 12H). ¹³C-NMR (101 MHz, CDCl₃) δ 150.2, 136.5, 114.7, 110.8, 83.3, 70.9, 68.7, 51.3, 25.0. IR(solid) v_{max} 3055, 2857, 1585, 1494, 1349, 1110, 803, 700 cm⁻¹. HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₂₄H₄₁BNO₇, 466.2976; found, 466.2979.

7-Benzyl-16-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane 10b.

Following the general procedure, compound **10b** was obtained as a pale yellow oil in 63% yield (calculated from ¹H NMR, as the product comes with an inseparable impurity, assigned as the dehalogenation product from **9c**). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.7 Hz, 2H), 7.54 – 7.06 (m, 5H), 6.65 (d, *J* = 8.7 Hz, 2H), 3.88 – 3.47 (m, 22H), 2.82 (t, *J* = 5.9 Hz, 4H), 1.32 (s, 12H). HRMS (ESI) (m/z): [M+H⁺] calcd. for C₃₁H₄₈BN₂O₆, 555.3605; found, 555.3599.

Synthesis of compound 12a.

Methyl 2-chloroimidazo[1,2-*a*]pyridine-7-carboxylate **12a** was obtained following a procedure described by Byun et al.¹¹ (**Scheme S10**) Spectral data for compound **12a** is consistent with the previously reported values.¹¹

Scheme S10. Synthesis of compound 12a.

Methyl 2-chloroimidazo[1,2-a]pyridine-7-carboxylate 12a.

Following the reported procedure, compound **12a** was obtained as a white solid in 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.21 (m, 1H), 8.09 (dd, *J* = 7.1, 1.0 Hz, 1H), 7.61 (d, *J* = 0.7 Hz, 1H), 7.46 (dd, *J* = 7.1, 1.7 Hz, 1H), 3.97 (s, 3H).

Synthesis of compound 12b.

Methyl 2-iodoimidazo[1,2-*a*]pyridine-7-carboxylate **12b** was obtained following a modified procedure described by Claiborne et al.¹¹ (**Scheme S11**)

Scheme S11. Synthesis of compound 12b.

To a microwave sealable glass vial equipped with a magnetic stirrer, methyl 2-chloroimidazo[1,2-a]pyridine-7-carboxylate **12a** (105.3 mg, 0.5 mmol, 1.0 equiv.), hydriodic acid 57% (1.7 mL, 12.5 mmol, 25.0 equiv.) and NaI (374.7 mg, 2.5 mmol, 5.0 equiv.) were added sequentially. The vial was sealed and stirred at 100 °C for 1 h.

Purification: The reaction crude was cooled to room temperature and poured slowly over 50 mL of Na_2CO_3 (sat.). The aqueous solution was then extracted with EtOAc (3x50 mL) and the combined organic fractions were washed with Brine (3x150 mL). The organic fraction was collected, dried over MgSO₄, filtered and evaporated under reduced pressure, affording the corresponding final adduct **12b**.

Methyl 2-iodoimidazo[1,2-*a*]pyridine-7-carboxylate 12b.

Following the general procedure, compound **12b** was obtained as a brown solid in 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.24 (m, 1H), 8.11 (dd, *J* = 7.0, 1.0 Hz, 1H), 7.78 (d, *J* = 0.7 Hz, 1H), 7.41 (dd, *J* = 7.1, 1.7 Hz, 1H), 3.96 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 165.4, 145.9, 126.7, 124.2, 119.5, 119.3, 112.4, 93.5, 52.9. IR(solid) ν_{max} 3139, 2950, 1703, 1430, 1346, 1308, 1267, 1242, 736. cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₉H₇IN₂O₂, 301.9552; found, 301.9548. m.p.: 189-191 °C.

Synthesis of compound 13.

Methyl 1-iodobenzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxylate **13** was obtained following a modified procedure described by Semwal et al.¹³ (**Scheme S12**)

Scheme S12. Synthesis of compound 13.

To a microwave sealable glass vial equipped with a magnetic stirrer, methyl 2-iodoimidazo[1,2-a]pyridine-7-carboxylate **12b** (30.2 mg, 0.1 mmol, 1.0 equiv.), K₂CO₃ (27.6 mg, 0.2 mmol, 2.0 equiv.), 18-Crown-6 (52.9 mg, 0.2 mmol, 2.0 equiv.), 1.0 mL of acetone and 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (49 µL, 0.2 mmol, 2.0 equiv.) were added sequentially. The vial was sealed and stirred at 60 °C for 48 h.

Purification: The reaction crude was cooled to room temperature and the solvent was removed under reduced pressure. The solid was dissolved in 50 mL of EtOAc and washed with Brine (3x50 mL). Then, the organic fraction was collected, dried over MgSO₄, filtered and evaporated under reduced pressure. Finally, the resulting solid was further purified by column chromatography on silica gel with a mixture of n-hexane:acetone and a gradient of polarity from (9.5:0.5) to (8:2), affording the corresponding final adduct **13**.

Methyl 1-iodobenzo[a]imidazo[5,1,2-cd]indolizine-4-carboxylate 13.

Following the general procedure, compound **13** was obtained as a brown solid in 22% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (dd, J = 11.4, 0.8 Hz, 2H), 8.45 – 8.32 (m, 2H), 7.83 (ddd, J = 8.1, 7.4, 1.2 Hz, 1H), 7.70 (ddd, J = 8.5, 7.4, 1.1 Hz, 1H), 4.10 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 166.5, 140.7, 131.7, 130.0, 129.2, 128.9, 128.6, 126.3, 123.5, 120.3, 116.2, 114.7, 110.0, 92.4, 53.2. IR(solid) v_{max} 2955, 1714, 1232, 764, 731 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₁₅H₉IN₂, 375.9709; found, 375.9706. m.p.: 148-151 °C.

Synthesis of compounds 14a and 14b.

Compounds **14a** and **14b** were obtained following a modified procedure described by Lévesque et al.¹⁴ (**Scheme S13**)

Scheme S13. Synthesis of compounds 14a and 14b.

To a microwave sealable glass vial equipped with a magnetic stirrer, $PdCl_2(dppf)$ (3.7 mg, 0.005 mmol, 0.05 equiv.), the corresponding crown ether derivative **10** (0.1 mmol, 1.0 equiv.), K_3PO_4 (84.9 mg, 0.4 mmol, 4.0 equiv.), 1 mL of a mixture of DMF and H_2O (83:17) and methyl 1-iodobenzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxylate **13** (37.6 mg, 0.1 mmol, 1.0 equiv.) were added sequentially. The vial was sealed, heated to 80 °C in an oil bath and stirred for 2 h.

Purification: The reaction crude was cooled to room temperature and the solvent was removed under reduced pressure. The solid was dissolved in 50 mL of EtOAc and washed with Na₂CO₃ (3x50 mL) and Brine (3x50 mL). Then, the organic fraction was collected, dried over MgSO₄, filtered and evaporated under reduced pressure. Finally, the resulting solid was further purified by column chromatography on silica gel with a mixture of EtOAc:MeOH and a gradient of polarity from pure EtOAc to (96:4), affording the corresponding final adducts **14a** and **14b**.

Methyl 1-(4-(1,4,7,10,13-pentaoxa-16-azacyclooctadecan-16yl)phenyl)benzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxylate 14a.

Following the general procedure, compound **14a** was obtained as a yellow oil in 37% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.71 (d, *J* = 7.0 Hz, 1H), 8.47 (dd, *J* = 15.8, 8.0 Hz, 2H), 8.29 (d, *J* = 8.9 Hz, 2H), 7.85 – 7.78 (m, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 8.9 Hz, 2H), 4.09 (s, 3H), 3.84 – 3.74 (m, 8H), 3.70 (d, *J* = 5.4 Hz, 16H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.2, 150.5, 149.2, 139.1, 131.7, 130.0, 129.4, 129.4, 128.9, 127.5, 125.1, 123.4, 121.6, 121.3, 121.2, 113.6, 112.1, 109.0, 71.1, 71.0, 70.9, 70.8, 68.8, 52.9, 51.6. IR(solid) v_{max} 3404, 2911, 2869, 1714, 1647, 1602, 1113, 1092, 749 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₃₃H₃₇N₃O₇, 587.2632; found, 587.2627.

Methyl 1-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)benzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxylate 14b.

Following the general procedure, compound **14b** was obtained as a yellow oil in 24% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (dd, *J* = 6.9, 0.9 Hz, 2H), 8.58 – 8.40 (m, 2H), 8.30 (d, *J* = 8.9 Hz, 2H), 7.82 (ddd, *J* = 8.2, 7.2, 1.1 Hz, 1H), 7.66 (ddd, *J* = 8.1, 7.2, 1.0 Hz, 1H), 7.41 – 7.27 (m, 5H), 6.94 (d, *J* = 9.0 Hz, 2H), 4.09 (s, 3H), 3.82 – 3.58 (m, 22H), 2.84 (s, 4H). ¹³C-NMR (101 MHz, CDCl₃) δ 167.2, 150.5, 149.3, 139.8, 132.1, 131.7, 130.1, 129.4, 129.3, 129.1, 128.9, 128.4, 127.8, 127.5, 127.2, 127.1, 125.1, 123.4, 121.2, 113.6, 112.0, 109.0, 71.2, 70.8, 70.3, 69.0, 60.0, 53.9, 53.0, 51.6. IR(solid) v_{max} 2860, 1716, 1606, 1447, 1345, 1231, 1109, 732 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₄₀H₄₄N₄O₆, 676.3261; found, 676.3280.

Synthesis of compounds 15aa-bb.

Compounds **15aa-bb** were obtained after two reaction steps, being the first based on a modified procedure described by Sanchez-Sanchez et al.¹⁵ and the second one based on a modified procedure described by Chinchilla et al.¹⁶ (Scheme S14)

Scheme S14. Synthesis of compounds 15aa and 15bb.

To a round bottom flask equipped with a magnetic stirrer, the corresponding ester derivative **14** (0.1 mmol, 1.0 equiv.), 5 mL of a mixture of H_2O :acetone (1:1) and NaOH (13.2 mg, 0.33 mmol, 3.3 equiv.) were added sequentially. The reaction mixture was stirred overnight.

Purification: Acetone was removed under reduced pressure. Then, 20 mL of deionized water were added and the aqueous solution was washed with CH_2Cl_2 (3x20 mL) and 25 mL of a NH₄Cl saturated solution were added. The mixture was extracted CH_2Cl_2 (3x50 mL), and the combined organic layers were washed with 50 mL of deionized water. Finally, the solvent was evaporated under reduced pressure, giving rise to a yellow solid, which was used directly for the next reaction without further purification.

The last reaction product was charged in a microwave sealable glass vial equipped with a magnetic stirrer. Then, EDC·HCl (57.5 mg, 0.3 mmol, 3.0 equiv.), NHS (34.5 mg, 0.3 mmol, 3.0 equiv.), the corresponding silatrane derivative **6** (0.5 mmol, 5.0 equiv.) and 10 mL of CH₂Cl₂

were added sequentially. The vial was sealed, purged with argon, heated to 40 °C in an oil bath and stirred overnight.

Purification: The reaction crude was cooled to room temperature and the solvent was removed under reduced pressure. Then, the solid was purified by flash chromatography in a Biotage Isolera Four system with a Biotage Snap Cartridge KP-Sil 10g, gradient of polarity from a CH₂Cl₂:AcOEt mixture (1:1) to a CH₂Cl₂:AcOEt:MeOH mixture (45:45:10), affording the corresponding final adducts **15aa-bb**.

1-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl) phenyl)-N-(3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3] undecan-1-yl) propyl) benzo[a] imidazo[5,1,2-cd] indolizine-4-carboxamide 15aa.

Following the general procedure, compound **15aa** was obtained as a yellow oil in 42% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 0.8 Hz, 1H), 8.54 – 8.37 (m, 3H), 8.22 (d, J = 8.8 Hz, 2H), 7.79 (ddd, J = 8.3, 5.3, 1.3 Hz, 2H), 7.71 – 7.59 (m, 1H), 6.94 (d, J = 8.8 Hz, 2H), 3.85 – 3.66 (m, 24H), 3.58 (q, J = 6.1 Hz, 2H), 2.82 (t, J = 5.8 Hz, 6H), 1.85 (p, J = 7.1 Hz, 2H), 0.62 (t, J = 7.3 Hz, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.0, 149.3, 138.2, 135.0, 131.7, 130.1, 129.6, 129.6, 129.5, 125.4, 123.7, 121.1, 120.5, 120.2, 112.1, 109.6, 109.0, 71.1, 71.0, 70.9, 70.8, 68.8, 57.8, 51.6, 51.1, 43.6, 23.7, 13.3. IR(solid) v_{max} 2915, 2866, 1708, 1603, 1459, 1347, 1209, 1097, 765. cm⁻¹. HRMS (ESI) (m/z): [M+H⁺] calcd. for C₄₁H₅₄N₅O₉Si, 788.3691; found, 788.3697.

1-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-*N*-(11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)benzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxamide 15ab.

Following the general procedure, compound **15ab** was obtained as a yellow oil in 44% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 8.46 (dd, *J* = 14.3, 8.1 Hz, 2H), 8.36 – 8.19 (m, 3H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.41 (d, *J* = 5.1 Hz, 1H), 3.94 – 3.61 (m, 30H), 3.58 (q, *J* = 6.7 Hz, 2H), 2.78 (t, *J* = 5.7 Hz, 6H), 1.71 (p, *J* = 7.4 Hz, 2H), 1.47 – 1.41 (m, 2H), 1.33 – 1.19 (m, 14H), 0.55 – 0.31 (m, 2H). ¹³C-NMR (126 MHz, CDCl₃) δ 167.4, 150.0, 149.1, 139.0, 133.1, 131.5, 130.0, 129.6, 129.5, 129.3, 124.9, 123.6, 121.7, 121.1, 120.7, 112.1, 109.8, 107.6, 71.0, 68.8, 58.1, 51.6, 51.3, 40.8, 34.1, 29.9, 29.8, 29.7, 29.7, 29.5, 27.3, 25.2, 16.6. IR(solid) v_{max} 3318, 2922, 2855, 1642, 1607, 1460, 1350, 1125, 1105, 770 cm⁻¹. HRMS (ESI) (m/z): [M+H⁺] calcd. for C₄₉H₇₀N₅O₉Si, 900.4943; found, 900.4938.

N-(3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)-1-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)benzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxamide 15ba.

Following the general procedure, compound **15ba** was obtained as a yellow oil in 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.44 (dd, *J* = 8.1, 4.6 Hz, 2H), 8.38 (s, 1H), 8.26 (d, *J* = 8.6 Hz, 2H), 7.79 (t, *J* = 7.8 Hz, 1H), 7.68 – 7.57 (m, 2H), 7.37 – 7.17 (m, 5H), 6.93 (d, *J* = 8.7 Hz, 2H), 3.85 – 3.54 (m, 30H), 2.88 (t, *J* = 5.7 Hz, 4H), 2.81 (d, *J* = 5.8 Hz, 6H), 1.85 (p, *J* = 7.0 Hz, 2H), 0.63 (t, *J* = 7.3 Hz, 2H).¹³C-NMR (101 MHz, CDCl₃) δ 173.3, 167.2, 149.2, 149.1, 138.8, 134.4, 131.6, 130.0, 129.5, 129.4, 129.2, 128.4, 127.6, 127.2, 125.0, 123.6, 121.5, 121.0, 120.5, 112.0, 109.8, 108.3, 71.2, 70.8, 70.0, 69.0, 59.8, 57.8, 53.7, 51.5, 51.1, 43.4, 23.7, 13.2. IR(solid) v_{max} 2923, 1642, 1460, 1350, 1099, 769 cm⁻¹. HRMS (ESI) (m/z): [M+H⁺] calcd. for C₄₈H₆₁N₆O₈Si, 877.4320; found, 877.4327.

N-(11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)-1-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)benzo[*a*]imidazo[5,1,2*cd*]indolizine-4-carboxamide 15bb.

Following the general procedure, compound **15bb** was obtained as a yellow oil in 57% yield. ¹H NMR (500 MHz, CDCl_{3_10}) δ 8.45 (s, 1H), 8.39 (d, *J* = 7.9 Hz, 1H), 8.37 – 8.30 (m, 1H), 8.27 (s, 1H), 8.26 – 8.21 (m, 2H), 7.75 (t, *J* = 7.7 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.39 – 7.15 (m, 5H), 6.91 (d, *J* = 8.5 Hz, 2H), 6.67 (s, 1H), 3.81 – 3.62 (m, 28H), 3.55 (q, *J* = 6.8 Hz, 2H), 2.84 (t, *J* = 5.9 Hz, 4H), 2.76 (t, *J* = 5.8 Hz, 6H), 1.69 (p, *J* = 7.3 Hz, 2H), 1.48 – 1.17 (m, 16H), 0.46 – 0.37 (m, 2H). ¹³C-NMR (126 MHz, CDCl_{3_10}) δ 167.4, 149.8, 149.1, 138.9, 133.2, 131.4, 130.0, 129.4, 129.3, 129.1, 129.0, 128.3, 127.0, 124.8, 123.4, 121.7, 121.0, 120.6, 111.9, 109.9, 107.5, 71.2, 70.8, 70.3, 69.0, 60.0, 58.1, 53.9, 51.5, 51.3, 40.8, 34.1, 29.8, 29.8, 29.7, 29.6, 29.5, 25.2, 16.6. IR(solid) v_{max} 2922, 2855, 1642, 1606, 1460, 1397, 1105, 770 cm⁻¹. HRMS (ESI) (m/z): [M]⁺ calcd. for C₅₆H₇₆N₆O₈Si, 988.5494; found, 988.5486.

4. NMR Spectra

16-(4-Nitrophenyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane (2a)

¹H-NMR

7-(4-Nitrophenyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (2b)

¹H-NMR

S26

g-HSQC

2-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-bromo-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (4a)

¹H-NMR

¹H-NMR

¹H-NMR

¹³C-NMR

g-HSQC

3-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propan-1-amine (6a)

¹H-NMR

DEPT-135

g-HSQC

11-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecan-1-amine (6b)

¹H-NMR

DEPT-135

 $\begin{array}{c} -58.13 \\ -51.35 \\ -51.35 \\ -42.50 \\ -42.50 \\ 29.69 \\ 229.69 \\ 229.69 \\ 227.07 \\ 25.23 \\ -16.57 \end{array}$

g-HSQC

 $\label{eq:2-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-((3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (7aa)$

g-HSQC

 $\label{eq:2-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-((11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (7ab)$

g-HSQC

 $\label{eq:constraint} \begin{array}{l} 6-((3-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)amino)-2-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (7ba) \end{array}$

g-HSQC

 $\label{eq:constraint} \begin{array}{l} 6-((11-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)amino)-2-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (7bb) \end{array}$

g-HSQC

N-Phenyl-1-aza-18-crown (8a)

N-Phenyl-1,10-diaza-18-crown-6 (8b)

¹H-NMR

g-HSQC

N-(4-iodophenyl)-1-aza-18-crown-6 (9a)

g-HSQC

N-(4-iodophenyl)-1,10-diaza-18-crown-6 (9b)

g-HSQC

7-Benzyl-16-(4-iodophenyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (9c)

g-HSQC

N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)-1-aza-18-crown-6~(10a)

g-HSQC

7-Benzyl-16-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (10b)

Methyl 2-chloroimidazo[1,2-a]pyridine-7-carboxylate (12a)

Methyl 2-iodoimidazo[1,2-*a*]pyridine-7-carboxylate (12b)

g-HSQC

Methyl 1-iodobenzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxylate (13)

g-HSQC

Methyl 1-(4-(1,4,7,10,13-pentaoxa-16-azacyclooctadecan-16yl)phenyl)benzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxylate (14a)

g-HSQC

 $\label{eq:linear} Methyl 1-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxylate (14b)$

g-HSQC

 $\label{eq:linear} 1-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-N-(3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxamide (15aa)$

g-HSQC

 $\label{eq:linear} \begin{array}{l} 1-(4-(1,4,7,10,13-\text{Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-$N-(11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxamide (15ab) \end{array}$

g-HSQC

DEPT-135

g-HSQC

N-(11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)-1-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxamide (15bb)

$$\begin{array}{c} 129,37\\ 129,37\\ 128,301\\ 128,301\\ 128,301\\ 128,301\\ 128,301\\ 121,01\\ 121,01\\ 101,94\\ 101,94\\ 101,94\\ 101,94\\ 101,54\\ 101,54\\ 101,54\\ 101,54\\ 101,54\\ 101,54\\ 101,56\\ 11,5\\ 11$$

g-HSQC

5. Photophysical Properties of Compounds 7aa-bb, 14a,b and 15aa-bb.

 $\label{eq:2-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-((3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (7aa)$

 $\label{eq:2-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-6-((11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (7ab)$

 $\label{eq:constraint} \begin{array}{l} 6-((3-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)amino)-2-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (7ba) \end{array}$

6-((11-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)amino)-2-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (7bb)

Methyl 1-(4-(1,4,7,10,13-pentaoxa-16-azacyclooctadecan-16yl)phenyl)benzo[*a*]imidazo[5,1,2-*cd*]indolizine-4-carboxylate (14a)

$\label{eq:linear} 1-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-N-(3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxamide (15aa)$

 $\label{eq:linear} \begin{array}{l} 1-(4-(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)phenyl)-N-(11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxamide (15ab) \end{array}$

 $\label{eq:solution} N-(3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)propyl)-1-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxamide (15ba)$

N-(11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)undecyl)-1-(4-(16-benzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7-yl)phenyl)benzo[a]imidazo[5,1,2-cd]indolizine-4-carboxamide (15bb)

6. Computational data

Full ref. (34) of the main text: Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; S115 Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. and Fox, D. J Gaussian, Inc., Wallingford CT, 2009.

Cartesian coordinates (in Å) 7aa' (UV/Vis)

Center Number	Atomic Number	Atomic Type	Х	Coordinates Y	(Angstroms) Z
1	6	0	1.981323	-0.244825	-0.189151
2	6	0	1.269204	-0.482027	0.980343
3	6	0	1.299533	-0.167783	-1.396882
4	6	0	-0.108831	-0.643964	0.949114
5	1	0	1.797147	-0.552776	1.924278
6	6	0	-0.080032	-0.319667	-1.442206
7	1	0	1.848459	0.026453	-2.311033
8	6	0	-0.829257	-0.564113	-0.266724
9	1	0	-0.620870	-0.856884	1.876300
10	1	0	-0.573047	-0.223342	-2.398508
11	6	0	-6.698852	2.834301	0.880630
12	1	0	-7.203356	2.870055	-0.090326
13	1	0	-6.776561	3.835584	1.326687
14	6	0	-7.383485	1.827959	1.789145
15	1	0	-8.399899	2.176389	2.014440
16	1	0	-6.833441	1.753661	2.729771
17	6	0	-8.393093	0.282615	0.246291
18	1	0	-8.574543	1.187146	-0.346279
19	1	0	-9.341075	-0.003544	0.720653
20	6	0	-7.925162	-0.802667	-0.702771
21	1	0	-6.945662	-0.531177	-1.107571
22	1	0	-8.637775	-0.866433	-1.533058
23	6	0	-6.585320	-2.710417	-0.090627
24	1	0	-6.118730	-2.602795	-1.077412
25	1	0	-6.755602	-3.773755	0.089118
26	6	0	-5.670709	-2.119375	0.972871
27	1	0	-6.045653	-2.360062	1.976848
28	1	0	-5.669579	-1.033140	0.872657
29	6	0	-3.376950	-1.940944	1.552048
30	1	0	-2.502427	-2.591968	1.602406

31	1	0	-3.741939	-1.771710	2.574446
32	6	0	-3.004211	-0.601583	0.913583
33	1	0	-2.466225	0.004438	1.644180
34	1	0	-3.905977	-0.040717	0.664080
35	6	0	-2.911608	-0.875796	-1.562543
36	1	0	-3.755017	-1.547689	-1.396096
37	1	0	-2.257965	-1.370650	-2.280954
38	6	0	-3.442493	0.424330	-2.158161
39	1	0	-3.587831	0.315908	-3.241738
40	1	0	-2.726095	1.236142	-1.987888
41	6	0	-5.127541	2.067278	-1.685031
42	1	0	-4.718033	2.512658	-2.599679
43	1	0	-6.214037	2.038672	-1.795938
44	6	0	-4.731836	2.919282	-0.485486
45	1	0	-3.652979	2.858183	-0.326835
46	1	0	-4.987248	3.969727	-0.680457
47	7	0	-2.200522	-0.721334	-0.299590
48	8	0	-4.360917	-2.656123	0.800902
49	8	0	-7.867120	-2.087359	-0.070501
50	8	0	-7.404541	0.513476	1.244760
51	8	0	-5.330469	2.470997	0.727709
52	8	0	-4.695556	0.718082	-1.538718
53	6	0	3.904225	1.224546	0.042636
54	6	0	4.211222	-1.225613	-0.308259
55	6	0	5.372707	1.383077	0.079286
56	6	0	5.662569	-1.035416	-0.237398
57	6	0	6.216932	0.249646	-0.024087
58	6	0	7.632188	0.422522	0.045434
59	6	0	8.144423	1.739700	0.106977
60	6	0	5.912381	2.651559	0.195137
61	6	0	7.303896	2.831052	0.183202
62	1	0	9.213164	1.894617	0.060872
63	1	0	5.245796	3.501004	0.267363
64	1	0	7.717692	3.830830	0.221534
65	6	0	6.510274	-2.121270	-0.397319
66	6	0	8.476378	-0.739982	-0.023151
67	6	0	7.893530	-1.977686	-0.288565
68	1	0	6.080513	-3.098745	-0.575220
69	1	0	8.528974	-2.852298	-0.367847
70	7	0	3.413284	-0.074497	-0.146932
71	8	0	3.133563	2.166518	0.167354
72	8	0	3.681253	-2.313919	-0.493529
73	7	0	9.855625	-0.630755	0.113620
74	1	0	10.310105	-1.497739	-0.146228
75	6	0	10.438032	-0.116990	1.366219
76	1	0	10.336407	-0.843575	2.180723
77	1	0	11.496167	0.088663	1.204083
78	1	0	9.952100	0.805092	1.671807

Zero-point correction= 0.649426(Hartree/Particle) Thermal correction to Energy= 0.687289 Thermal correction to Enthalpy= 0.688234 Thermal correction to Gibbs Free Energy= 0.574695 Sum of electronic and zero-point Energies= -1894.428451 Sum of electronic and thermal Energies= -1894.390588 Sum of electronic and thermal Enthalpies= -1894.389644 Sum of electronic and thermal Free Energies= -1894.503183

Excitation energies and oscillator strengths 7aa' (UV/Vis).

Excited State 1: Singlet-A 2.6807 eV 462.50 nm f=0.0001 <S**2>=0.000 150 -> 151 0.70355 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1893.53203998Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 3.0956 eV 400.52 nm f=0.3669 <S**2>=0.000 149 -> 151 0.69934 Singlet-A 3.9601 eV 313.09 nm f=0.0111 Excited State 3: <S**2>=0.000 145 -> 151 0.56970 149 -> 154 -0.37211 3.9898 eV 310.75 nm f=0.0056 Excited State 4: Singlet-A <S**2>=0.000 150 -> 152 0.61332 -0.23329 150 -> 153 150 -> 155 0.14991 150 -> 156 0.11497 150 -> 158 0.11183 Excited State 4.0866 eV 303.39 nm f=0.0004 5: Singlet-A <S**2>=0.000 141 -> 151 0.64595 144 -> 151 0.15149 Excited State Singlet-A 4.2020 eV 295.06 nm f=0.0342 6: <S**2>=0.000 150 -> 163 0.63199 0.11550 150 -> 165 150 -> 166 -0.21115 Excited State 7: Singlet-A 4.2191 eV 293.87 nm f=0.0345 <S**2>=0.000 -0.11388 150 -> 152 150 -> 153 -0.38324 150 -> 155 -0.15886 150 -> 156 0.40101 150 -> 157 0.12128 150 -> 158 -0.27726 150 -> 160 -0.15244 Excited State 4.2330 eV 292.90 nm f=0.0349 8: Singlet-A <s**2>=0.000 143 -> 151 -0.12054 150 -> 152 -0.11122 150 -> 153 -0.17373 150 -> 154 0.24545 150 -> 155 0.37542 150 -> 156 -0.18591 150 -> 157 -0.24171 150 -> 158 -0.31203 150 -> 161 -0.13638 Excited State 9: Singlet-A 4.2562 eV 291.30 nm f=0.0103 <S**2>=0.000

		143 -> 151	-0.41300	
		146 -> 151	0.50133	
		147 -> 151	-0.10529	
		148 -> 151	0.15104	
Eve	ited State 10.	Singlot-A	1 2033 ov 288 70 pm f	-0 0006
EXC	Tied State IV.	20**2>=	4.2955 ev 200.79 mm 1	-0.0000
		10 2/-	0.000	
		150 -> 154	0.15843	
		150 -> 155	0.25224	
		150 -> 156	-0.10905	
		150 -> 157	0.58118	
		150 -> 162	0.20093	
SavETr:	write IOETrn=	770 NScale= 10	NData= 16 NLR=1 NState=	10 LETran=
		190	•	

Cartesian coordinates (in Å) 7aa' (Emission)

7	а	а	Ì

	Center Number	Atomic Number	Atomic Type	Coo X	ordinates (An Y	ngstroms) Z
-	1	6	0	-2.042453	-0.206972	0.058030
	2	6	0	-1.300318	0.063109	-1.101934
	3	6	0	-1.378862	-0.640539	1.215614
	4	6	0	0.056423	-0.088459	-1.111480
	5	1	0	-1.819229	0.367393	-2.002084
	6	6	0	-0.022464	-0.798290	1.222728
	7	1	0	-1.951121	-0.819069	2.117071
	8	6	0	0.745990	-0.525429	0.055217
	9	1	0	0.593433	0.080221	-2.035062
	10	1	0	0.464747	-1.081450	2.146125
	11	6	0	6.790060	2.817275	0.182576
	12	1	0	7.299150	2.497462	1.104490
	13	1	0	6.845509	3.917246	0.152608
	14	6	0	7.494160	2.240455	-1.019171
	15	1	0	8.508573	2.663146	-1.086088
	16	1	0	6.954378	2.523933	-1.929171
	17	6	0	8.500652	0.260154	-0.152126
	18	1	0	8.734842	0.920293	0.697163
	19	1	0	9.436314	0.098799	-0.710443
	20	6	0	7.988165	-1.042821	0.402819
	21	1	0	7.042381	-0.864343	0.935059
	22	1	0	8.717791	-1.428677	1.128122
	23	6	0	6.491042	-2.504755	-0.745648
	24	1	0	6.054452	-2.731994	0.240764
	25	1	0	6.554144	-3.445081	-1.303331
	26	6	0	5.601337	-1.523063	-1.473805
	27	1	0	5.986201	-1.333545	-2.488296
	28	1	0	5.599980	-0.564372	-0.937735
	29	6	0	3.349088	-1.169138	-2.034401
	30	1	0	2.477325	-1.752724	-2.349130
	31	1	0	3.740092	-0.639209	-2.915912
	32	6	0	2.930514	-0.121025	-1.005288

33	1	0	2.408878	0.699665	-1.496143
34	1	0	3.814016	0.308088	-0.519237
35	6	0	2.794080	-1.378896	1.125021
36	1	0	3.567045	-1.988143	0.644278
37	1	0	2.106663	-2.063104	1.618951
38	6	0	3.442574	-0.444011	2.127180
39	1	0	3.585216	-0.979414	3.077500
40	1	0	2.778229	0.412673	2.324590
41	6	0	5.203497	1.140925	2.238955
42	1	0	4.842762	1.222707	3.273714
43	1	0	6.292533	1.016338	2.286568
44	6	0	4.846067	2.385319	1.457892
45	1	0	3.761107	2.424892	1.298779
46	1	0	5.128128	3.282704	2.030068
47	7	0	2.088608	-0.669987	0.055356
48	8	0	4.300180	-2.077910	-1.542159
49	8	0	7.803819	-2.011004	-0.616135
50	8	0	7.527543	0.831993	-0.997552
51	8	0	5.444397	2.391157	0.179453
52	8	0	4.683882	-0.019692	1.613652
53	6	0	-3.929918	1.252350	-0.286002
54	6	0	-4.224993	-1.165313	0.410385
55	6	0	-5.354435	1.396514	-0.291759
56	6	0	-5.645246	-0.959877	0.392320
57	6	0	-6.192342	0.296932	0.030728
58	6	0	-7.612776	0.473909	0.011303
59	6	0	-8.131431	1.758851	-0.270686
60	6	0	-5.915616	2.653375	-0.598004
61	6	0	-7.287510	2.820679	-0.570687
62	1	0	-9.203103	1.914714	-0.222723
63	1	0	-5.251897	3.476862	-0.836449
64	1	0	-7.713959	3.797538	-0.781638
65	6	0	-6.497544	-2.024689	0.728339
66	6	0	-8.442500	-0.642562	0.306064
67	6	0	-7.868060	-1.858675	0.672547
68	1	0	-6.062135	-2.977035	1.009511
69	1	0	-8.524306	-2.694732	0.906237
/0	/	0	-3.441549	-0.039303	0.058///
/1	8	0	-3.11/8/9	2.151141	-0.525343
72	8	0	-3.662351	-2.230585	0.6/534/
/3	/	0	-9.84/118	-0.500632	0.253800
74	1	0	-10.283934	-1.270893	0./49479
15	6	0	-10.419181	-0.410361	-L.U8866/
/ 6	1	0	-10.1//310	-1.286334	-1./10106
11	1	0	-11.506038	-U.323816	-I.UI5935
/ 8	⊥ ·		-10.043168	0.4/80/3	-1.003396

Excitation energies and oscillator strengths 7aa' (Emission).

Excited State	1:	Singlet-A	2.0515 eV	604.35 nm	f=0.0067
		<s**2>=0.0</s**2>	00		
		150 -> 151	0.70334		
This state	e for opt	imization and/o	r second-or	der correct	ion.
Tota	al Energy	, E(TD-HF/TD-DF	T) = -1893	.54611630	
Copying the exci	ted state	e density for th	nis state as	s the 1-part	cicle RhoCI
		density.			
Excited State	2:	Singlet-A	2.9388 eV	421.88 nm	f=0.5020
		<s**2>=0.0</s**2>	00		
		149 -> 151	-0.70082		
Excited State	3:	Singlet-A	3.5688 eV	347.41 nm	f=0.3635
		<s**2>=0.0</s**2>	00		

		150 -> 152 -0.59544 150 -> 153 0.29438 150 -> 154 0.18015
Excited State	4:	Singlet-A 3.6554 eV 339.18 nm f=0.0176 <s**2>=0.000 150 -> 152 -0.24681 150 -> 153 -0.59979 150 -> 156 0.11741 150 -> 157 -0.21982</s**2>
Excited State	5:	Singlet-A 3.7830 eV 327.74 nm f=0.0024 <s**2>=0.000 140 -> 151 0.14317 141 -> 151 -0.51215 142 -> 151 0.12732 143 -> 151 0.20413 145 -> 151 0.21274 146 -> 151 0.10906 147 -> 151 -0.14800 148 -> 151 -0.20156</s**2>
Excited State	6:	Singlet-A 3.8352 eV 323.28 nm f=0.0330 <s**2>=0.000 138 -> 151 0.13746 144 -> 151 0.26663 146 -> 151 -0.34323 147 -> 151 -0.51692</s**2>
Excited State	7:	Singlet-A 3.8702 eV 320.36 nm f=0.0771 <s**2>=0.000 141 -> 151 0.23022 142 -> 151 -0.22528 143 -> 151 0.45760 144 -> 151 -0.30718 147 -> 151 -0.11847 149 -> 155 0.23561</s**2>
Excited State	8:	Singlet-A 3.9196 eV 316.32 nm f=0.0024 <s**2>=0.000 144 -> 151 -0.18884 146 -> 151 -0.10062 150 -> 155 -0.46660 150 -> 156 -0.33870 150 -> 157 -0.13999 150 -> 158 0.18112 150 -> 161 -0.16186</s**2>
Excited State	9:	Singlet-A 3.9337 eV 315.18 nm f=0.0069 <s**2>=0.000 141 -> 151 0.10076 143 -> 151 0.14814 144 -> 151 0.35321 145 -> 151 0.12136 146 -> 151 0.13156 148 -> 151 -0.13892 150 -> 154 0.11364 150 -> 155 0.18432 150 -> 156 -0.36096 150 -> 157 -0.14184 150 -> 158 0.20235 150 -> 161 -0.13748</s**2>
Excited State	10:	Singlet-A 3.9483 eV 314.02 nm f=0.0278 <pre><s**2>=0.000</s**2></pre> 143 -> 151 -0.14139 144 -> 151 -0.32667 145 -> 151 -0.12013

146 ->	151	-0.12566
148 ->	151	0.14154
150 ->	155	0.47798
150 ->	156	-0.17921
150 ->	158	0.12543

Cartesian coordinates (in Å) 7aa'-Ba(ClO₄)₂ (UV/Vis).

7aa'-Ba(ClO₄)₂

Center Number	Atomic Number	Atomic Type	X	Coordinates	(Angstroms) Z
1	6	0	-1.112822	-2.690667	-0.383232
2	6	0	-0.515793	-2.473141	-1.618306
3	6	0	-0.382446	-3.283288	0.635755
4	6	0	0.831547	-2.745332	-1.803636
5	1	0	-1.079359	-2.000814	-2.410830
6	6	0	0.960670	-3.583583	0.451668
7	1	0	-0.842316	-3.453163	1.601081
8	6	0	1.623393	-3.250821	-0.749329
9	1	0	1.270838	-2.492981	-2.755557
10	1	0	1.499623	-4.020398	1.277184
11	6	0	3.995581	2.885828	1.233636
12	1	0	4.538183	3.193891	0.330096
13	1	0	4.594843	3.179223	2.106031
14	6	0	2.644640	3.563819	1.347269
15	1	0	2.782744	4.650937	1.379551
16	1	0	2.157600	3.233739	2.264684
17	6	0	1.762894	4.013784	-0.888186
18	1	0	2.030877	5.047761	-0.643145
19	1	0	0.743211	3.983674	-1.265791
20	6	0	2.705678	3.476368	-1.952232
21	1	0	3.761972	3.615380	-1.684395
22	1	0	2.514515	4.015098	-2.889614
23	6	0	3.107493	1.504286	-3.226160
24	1	0	4.194435	1.620384	-3.106465
25	1	0	2.797961	1.997154	-4.157028
26	6	0	2.721122	0.040625	-3.276318
27	1	0	3.218787	-0.447225	-4.119817
28	1	0	1.641191	-0.041801	-3.401501
29	6	0	4.169990	-1.514398	-2.076688
30	1	0	4.767166	-1.321136	-1.187773
31	1	0	4.781397	-1.327613	-2.967826
32	6	0	3.709392	-2.973891	-2.070233
33	1	0	4.603830	-3.598909	-2.169124
34	1	0	3.095239	-3.185879	-2.946557
35	6	0	3.815486	-3.746117	0.286774
36	1	0	4.829016	-3.913612	-0.081650
37	1	0	3.474049	-4.701960	0.703918
38	6	0	3.879581	-2.742227	1.439330
39	1	0	4.632419	-3.114926	2.148815
40	1	0	2.933280	-2.646437	1.973317
41	6	0	4.731736	-0.620909	2.013309
42	1	0	3.994426	-0.560862	2.817258
43	1	0	5.665506	-1.036957	2.420170
44	6	0	5.020852	0.762248	1.488359
45	1	0	5.593780	1.295965	2.256195
46	1	0	5.627944	0.715370	0.574086

47	7	0	3.002561	-3.384732	-0.866772
48	8	0	3.070955	-0.596817	-2.041150
49	8	0	2.437425	2.091362	-2.118927
50	8	0	1.750900	3.212337	0.294049
51	8	0	3.809993	1,473714	1.233308
52	8	0	4 264465	-1 456302	0 959473
53	56	0	1 256374	0 460289	-0 000513
54	6	0	-2 355490	-0 773028	0 345655
55	6	0	-3 569213	-2 820100	-0 395203
56	6	0	-3 619840	-0 082364	0.513840
57	6	0	-1 811522	-2 095205	_0 181801
50	6	0	-1 9/150/	_0 7/3016	0.242080
50	0	0	2 207205	-0.743910	0.245969
59	/	0	-2.39/305	-2.096567	-0.11/231
60	8	0	-1.200307	-0.249544	0.578090
61	8	0	-3.509408	-3.968039	-0.791497
62	6	0	-6.0/9928	-0.055438	0.396433
63	6	0	-6.054068	1.336105	0.785749
64	6	0	-3.629/13	1.246310	0.905859
65	6	0	-7.273680	-0.768664	0.155775
66	6	0	-6.034894	-2.754948	-0.425083
67	6	0	-4.824698	1.948717	1.039557
68	6	0	-7.255437	-2.090452	-0.245234
69	1	0	-2.682294	1.739053	1.081693
70	1	0	-4.789236	2.990302	1.324751
71	1	0	-8.237240	-0.293337	0.297932
72	1	0	-8.186693	-2.614842	-0.420643
73	1	0	-5.998302	-3.786344	-0.752060
74	7	0	-7.225775	2.028044	0.912016
75	1	0	-8.048188	1.619455	0.504734
76	6	0	-7.281578	3.452188	1.181833
77	1	0	-8.326408	3.760178	1.203611
78	1	0	-6.841182	3.679687	2.156352
79	1	0	-6.757854	4.039684	0.418069
80	17	0	1.165396	0.181215	3.468407
81	17	0	-1.080843	1.667834	-2.378825
82	8	0	2.364919	0.489392	4.286426
83	8	0	0.042111	-0.270324	4.301496
84	8	0	0.776349	1.394665	2.649569
85	8	0	1.525359	-0.889830	2.443635
86	8	0	-0.744832	2.290397	-1.042037
87	8	0	-0.651684	2.570846	-3.473640
88	8	0	-0 278711	0 376401	-2 436409
89	8	0	-2 520665	1 358530	-2 455999
Zero-point cor	rrection=			0.683640	(Hartree/Particle)
Thermal correc	rtion to End	erav=		0 734729	(1141 0100) 1 41 01010)
Thermal correct	rtion to En	thalnv=		0 735674	
Thermal correct	rtion to Gil	ohs Free Ene	rav=	0 594183	
Sum of electro	nic and zer	ro-point Ene	raies=	-3441 8929	32
Sum of electro	nic and the	ermal Energia	-3-00	-3441 84184	43
Sum of electro	nic and the	ermal Enthal	oies=	-3441 8408	99
Sum of electro	nic and th	ormal Free F	nergies=	-3441 98239	29
Sam OF ETECTIO	LILE ALLA CIR	erwar LICC DI		JIII. JUZJ(

Excitation energies and oscillator strengths 7aa'-Ba(ClO₄)₂ (UV/Vis)

Excited State 1: Singlet-A 3.0958 eV 400.49 nm f=0.0001 <S**2>=0.000 204 -> 205 0.70302 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -3440.62265189Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 3.1357 eV 395.39 nm f=0.2715 <S**2>=0.000 203 -> 205 0.69660 3.7647 eV 329.33 nm f=0.0192 Excited State Singlet-A 3: <S**2>=0.000 204 -> 206 0.66761 204 -> 208 0.21565 Singlet-A Excited State 3.9848 eV 311.14 nm f=0.0005 4: <S**2>=0.000 201 -> 205 -0.15605 203 -> 207 0.66474 203 -> 215 -0.12625 Singlet-A Excited State 5: 4.0100 eV 309.19 nm f=0.0018 <S**2>=0.000 201 -> 205 0.50953 0.20570 203 -> 207 0.39579 203 -> 215 203 -> 216 0.14597 Singlet-A 4.0291 eV 307.72 nm f=0.0114 Excited State 6: <S**2>=0.000

 204
 ->
 206
 -0.22201

 204
 ->
 208
 0.58868

 204
 ->
 209
 0.10257

 204 -> 208 204 -> 209 204 -> 210 -0.27725 Singlet-A 4.0709 eV 304.56 nm f=0.0002 Excited State 7: <S**2>=0.000

 197
 ->
 205
 0.13080

 200
 ->
 205
 0.65064

 200 -> 235 -0.10367 Singlet-A 4.1132 eV 301.43 nm f=0.0063 Excited State 8: <S**2>=0.000 204 -> 208 -0.10052 204 -> 209 0.67173 204 -> 212 -0.17559 Excited State 9: Singlet-A 4.1454 eV 299.09 nm f=0.0000 <S**2>=0.000 203 -> 206 0.70574 Excited State 10: Singlet-A 4.2495 eV 291.76 nm f=0.0005 <S**2>=0.000 204 -> 207 0.69265 204 -> 210 -0.10899

S121

Cartesian coordinates (in Å) 7aa'-Ba(ClO₄)₂ (Emission)

7aa'-Ba(ClO₄)₂

Center Number	Atomic Number	Atomic	Coc	ordinates (An Y	ngstroms) 7
1	6	0	0.834267	2.576876	0.603132
2	6	0	0.409172	2.975984	-0.659061
3	6	0	-0.066441	2.577956	1.654270
4	6	0	-0.923364	3.261521	-0.888584
5	1	0	1.120181	3.004570	-1.473788
6	6	0	-1.406807	2.876651	1.434430
7	1	0	0.255678	2.277698	2.644022
8	6	0	-1.882750	3.162491	0.141116
9	1	0	-1.211043	3.532635	-1.893094
10	1	0	-2.073443	2.841328	2.280848
11	6	0	-3.620992	-3.276519	-0.278716
12	1	0	-3.929460	-3.314999	-1.332525
13	1	0	-4.329419	-3.871275	0.311745
14	6	0	-2.234260	-3.840548	-0.075541
15	1	0	-2.204852	-4.881525	-0.416456
16	1	0	-1.986045	-3.800540	0.984422
17	6	0	-0.945987	-3.432840	-2.081353
18	1	0	-1.194098	-4.485465	-2.257988
19	1	0	0.125421	-3.294133	-2.200007
20	6	0	-1.675626	-2.569617	-3.097274
21	1	0	-2.732739	-2.848779	-3.201995
22	1	0	-1.182695	-2.693958	-4.069531
23	6	0	-1.990695	-0.319974	-3.710617
24	1	0	-2.988706	-0.598336	-4.077483
25	1	0	-1.270842	-0.365907	-4.537017
26	6	0	-2.010514	1.074691	-3.124131
27	1	0	-2.360342	1.790936	-3.874692
28	1	0	-0.998165	1.350294	-2.821135
29	6	0	-4.004378	1.916243	-2.026388
30	1	0	-4.762659	1.421554	-1.423083
31	1	0	-4.364535	1.993148	-3.060241
32	6	0	-3.748928	3.317536	-1.465980
33	1	0	-4.700042	3.857827	-1.480117
34	1	0	-3.081521	3.878665	-2.121115
35	6	0	-4.198937	3.265477	0.977693
36	1	0	-5.156262	3.577488	0.557039
37	1	0	-3.937916	4.001669	1.747687
38	6	0	-4.398044	1.911803	1.675792
39	1	0	-5.386954	1.943536	2.153362
40	1	0	-3.665219	1.709786	2.458507
41	6	0	-5.028338	-0.288186	1.230630
42	1	0	-4.588152	-0.613831	2.177818
43	1	0	-6.088066	-0.043994	1.391094
44	6	0	-4.946500	-1.404292	0.225405
45	1	0	-5.642366	-2.189358	0.543308
46	1	0	-5.244771	-1.055812	-0.772673
47	7	0	-3.236523	3.332146	-0.107344
48	8	0	-2.853238	1.085518	-1.974294
49	8	0	-1.597990	-1.216540	-2.688503
50	8	0	-1.249004	-3.071291	-0.742052

51	8	0	-3.632332	-1.933785	0.176310
52	8	0	-4.356940	0.856222	0.733685
53	56	0	-1.202070	-0.306300	-0.032564
54	6	0	2.181003	0.665784	1.018415
55	6	0	3.281105	2.819995	0.428682
56	6	0	3.490158	0.003740	0.940097
57	6	0	4.557482	2.144392	0.405437
58	6	0	4.651387	0.753117	0.620279
59	7	0	2.141772	2.012427	0.755485
60	8	0	1.165045	0.019575	1.275599
61	8	0	3.110420	4.002988	0.193648
62	6	0	5.901521	0.097902	0.521769
63	6	0	5.905136	-1.334605	0.656792
64	6	0	3.523896	-1.397467	1.131253
65	6	0	7.061499	0.858154	0.259538
66	6	0	5.733656	2.888329	0.118512
67	6	0	4.713425	-2.055238	0.992250
68	6	0	6.950435	2.249040	0.061525
69	1	0	2.597791	-1.911179	1.351910
70	1	0	4.756057	-3.130208	1.104557
71	1	0	8.048558	0.414082	0.241635
72	1	0	7.847439	2.821655	-0.143036
73	1	0	5.640047	3.953337	-0.047712
74	7	0	7.048579	-2.006488	0.443261
75	1	0	7.833784	-1.473670	0.102347
76	6	0	7.195397	-3.448359	0.498268
77	1	0	8.231001	-3.696380	0.277539
78	1	0	6.952154	-3.824004	1.494673
79	1	0	6.550497	-3.938727	-0.236265
80	17	0	-1.894138	-1.420393	3.154277
81	17	0	1.631997	-0.735204	-2.144954
82	8	0	-3.136019	-2.169974	3.355173
83	8	0	-1.161144	-1.263739	4.394963
84	8	0	-1.057503	-2.097651	2.123537
85	8	0	-2.220432	-0.074905	2.571559
86	8	0	1.177032	-1.684070	-1.096330
87	8	0	1.302528	-1.263614	-3.472343
88	8	0	0.870425	0.529038	-1.897381
89	8	0	3.061073	-0.478642	-2.013957

Excitation energies and oscillator strengths 7aa'-Ba(ClO₄)₂ (Emission)

Excited State 1: Singlet-A 2.9396 eV 421.77 nm f=0.2606 <S**2>=0.000 204 -> 205 -0.69706 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -3441.14410968Copying the excited state density for this state as the 1-particle RhoCI density. 3.8886 eV 318.84 nm f=0.0150 Excited State 2: Singlet-A <S**2>=0.000 199 -> 205 0.10721 -0.66578 203 -> 205 4.1967 eV 295.43 nm f=0.0021 Excited State 3: Singlet-A <S**2>=0.000 -0.31203 201 -> 205 202 -> 205 0.35014 204 -> 215 0.45035 204 -> 216 0.17666 4.3778 eV 283.21 nm f=0.0002 Excited State 4: Singlet-A <S**2>=0.000 187 -> 205 -0.12746

		189 -> 205	0.21634		
		190 -> 205	-0.12903		
		191 -> 205	-0.15257		
		196 -> 205	-0.10445		
		198 -> 205	-0.43298		
		198 -> 234	-0.12271		
		199 -> 205	0.20575		
		203 -> 205	0.10369		
Rusital Chata	F .		4 5704 - 57	070 00	E 0 0124
Excited State	5:	Singlet-A	4.5/84 eV	270.80 nm	i=0.0134
		<s**2>=0</s**2>	0.000		
		204 -> 207	-0.65868		

Cartesian coordinates (in Å) 14a (UV/Vis)

14a

Center Number	Atomic Number	Atomic Type	Х	Coordinates Y	(Angstroms) Z
1	6	0	-1.670601	-0.277856	-0.340993
2	6	0	-0.937972	0.762678	0.250155
3	6	0	-0.943248	-1.257489	-1.037027
4	6	0	0.439523	0.840017	0.143243
5	1	0	-1.451792	1.520082	0.827902
6	6	0	0.433292	-1.194834	-1.154329
7	1	0	-1.477029	-2.083558	-1.489820
8	6	0	1.176377	-0.135975	-0.572649
9	1	0	0.942780	1.675535	0.607648
10	1	0	0.937314	-1.988619	-1.686491
11	6	0	7.227887	-1.300849	2.702754
12	1	0	7.721928	-2.069992	2.100645
13	1	0	7.357031	-1.578490	3.757965
14	6	0	7.875639	0.051127	2.458460
15	1	0	8.909963	0.028975	2.826035
16	1	0	7.334059	0.819826	3.014030
17	6	0	8.793775	-0.162827	0.246055
18	1	0	8.993936	-1.195776	0.555515
19	1	0	9.739987	0.392025	0.297126
20	6	0	8.275218	-0.200494	-1.177424
21	1	0	7.304038	-0.703828	-1.195298
22	1	0	8.977780	-0.779998	-1.787260
23	6	0	6.866120	1.466022	-2.197967
24	1	0	6.410589	0.637572	-2.754252
25	1	0	6.995396	2.304474	-2.885121
26	6	0	5.965776	1.854537	-1.033628
27	1	0	6.331217	2.774382	-0.557922
28	1	0	5.992188	1.061285	-0.285050
29	6	0	3.678069	2.170219	-0.482793
30	1	0	2.788846	2.609185	-0.938583
31	1	0	4.047032	2.858890	0.289570
32	6	0	3.335068	0.824689	0.159894
33	1	0	2.799358	1.000571	1.093530
34	1	0	4.247953	0.293366	0.430989
35	6	0	3.273993	-0.912440	-1.625646

36	1	0	4.087908	-0.324547	-2.052337
37	1	0	2.617092	-1.179318	-2.452377
38	6	0	3.862865	-2.174272	-1.005143
39	1	0	4.032879	-2.933250	-1.780820
40	1	0	3.169388	-2.589218	-0.264567
41	6	0	5.609808	-2.799889	0.518173
42	1	0	5.222865	-3.798008	0.281000
43	1	0	6.693366	-2.830840	0.381214
44	6	0	5.260105	-2.450928	1,959254
45	1	0	4.180094	-2.320861	2.057193
46	1	0	5.564437	-3.273822	2.620168
47	7	0	2.544214	-0.060686	-0.691740
48	8	0	4.643620	2.055227	-1.529427
49	8	0	8 169879	1 110604	-1 745822
50	8	0	7 828351	0 449989	1 093594
51	8	0	5 841749	-1 221082	2 384315
52	8	0	5 107398	-1 829591	-0 396154
53	6	0	-5 108171	-1 271110	-0 254755
54	6	0	-4 034806	0 691823	0.234733
55	7	0	-5 236493	0.053212	0.050323
56	6	0	-6 351043	0.0000212	0.295644
57	6	0	-7 5//926	0.120539	0.233453
58	6	0	-7 506/31	-1 268067	-0 066857
59	6	0	-6 31/110	_1 969810	-0.316753
60	1	0	-8 /89879	0 614340	0.398206
61	1	0	-6 3/5826	-3 022214	-0 558109
62	I 6	0	-1 374543	2 074665	0.361797
63	6	0	-5 912000	2.074005	0.501/9/
64	6	0	-3 620419	2.144/21	0.300818
64	6	0	-3.020410	2 250027	0.400007
65	6	0	-0.444910	3.339937	0.700407
67	6	0	-3.0090/4	4.303460	0.090000
67	0	0	-4.2/33/3	4.440103	0.742070
68	1	0	-3.6921/4	2.336189	0.033131
69	1	0	-7.522289	3.406/75	0.8/3/30
70	1	0	-2.545652	3.234851	0.300395
71		0	-3./92805	-1.531069	-0.436535
72	0	0	-3.11/300	-0.355285	-0.229171
73	1 C	0	-6.1445/2	5.456839	1.09/333
74	6	0	-8./6893/	-2.052/32	-0.143995
15	ð	0	-8.823649	-3.24044/	-0.39/520
/ 6	ð	U	-9.836863	-1.304414	0.098234
//	6	U	-11.129420	-1.982109	0.043131
/8	1	U	-11.8/1388	-1.218329	0.259622
/9	1	U	-11.289624	-2.402410	-0.949619
ου 		U 	-11.100356	-2.//5405	0./89620

Excitation energies and oscillator strengths 14a (UV/Vis).

Excited Sta	ate	1:	Singl	.et-A	2.8755	eV	431.17	nm	f=0.7337
<\$**2>=0.000									
			155 ->	157	-0.111	79			
			156 ->	157	0.683	52			
This	state	for op	timizat	ion and/o	r second	d-ord	der cor	rect	ion.
	Total	Energ	у, Е(ТІ	-HF/TD-DF	T) = -1	1969.	.671490	45	
Copying the	excite	ed stat	e dens	ity for th	nis stat	e as	the 1-	-part	icle RhoCI
				density.					
Excited Sta	ate	2:	Singl	et-A	3.2947	eV	376.31	nm	f=0.0602
				<s**2>=0.0</s**2>	000				
			155 ->	157	0.2038	30			
			156 ->	158	0.6613	11			
Excited Sta	ate	3:	Singl	et-A	3.5496	eV	349.29	nm	f=0.0912
				<s**2>=0.0</s**2>	000				
			154 ->	158	-0.100	52			
			155 ->	157	0.625	98			

			155 -> 158 156 -> 157 156 -> 158	0.13174 0.14685 -0.18566		
Excited	State	4:	Singlet-A <\$**2>=0 154 -> 157 155 -> 157 155 -> 158 156 -> 159 156 -> 160 156 -> 161	3.8314 eV .000 0.27174 -0.13656 0.43641 -0.32085 -0.23078 0.16674	323.60 nm	f=0.2746
Excited	State	5:	Singlet-A <\$**2>=0 154 -> 157 155 -> 158 156 -> 159 156 -> 160 156 -> 163	3.8384 eV .000 0.17508 0.26853 0.56008 -0.11120 0.17017	323.01 nm	f=0.0644
Excited	State	6:	Singlet-A <\$**2>=0 154 -> 157 155 -> 158 156 -> 160 156 -> 161 156 -> 162	3.9021 eV .000 0.19887 0.19236 0.55354 -0.22790 0.14289	317.74 nm	f=0.0870
Excited	State	7:	Singlet-A <\$**2>=0 151 -> 157 156 -> 161 156 -> 162 156 -> 163 156 -> 164 156 -> 166 156 -> 168 156 -> 169 156 -> 172	4.0755 eV .000 -0.12058 0.14169 0.35561 0.19986 -0.10603 0.21625 -0.24052 -0.34279 0.13117	304.22 nm	f=0.0233
Excited	State	8:	Singlet-A <s**2>=0 156 -> 160 156 -> 161 156 -> 162 156 -> 163 156 -> 164 156 -> 166 156 -> 167 156 -> 168 156 -> 169</s**2>	4.1041 eV .000 -0.15558 -0.24484 0.43185 0.20193 -0.11500 -0.19500 0.13863 0.14844 0.24089	302.10 nm	f=0.0149
Excited	State	9:	Singlet-A <s**2>=0 156 -> 159 156 -> 160 156 -> 161 156 -> 162 156 -> 167 156 -> 168 156 -> 169</s**2>	4.1489 eV .000 0.15331 0.22656 0.53788 0.17555 0.11380 0.11423 0.20484	298.83 nm	f=0.0034
Excited	State	10:	Singlet-A <s**2>=0 156 -> 163 156 -> 164 156 -> 165</s**2>	4.1990 eV .000 0.19540 0.59063 0.15746	295.27 nm	f=0.0007

156	->	168	0.23386
156	->	169	-0.13004

Cartesian coordinates (in Å) 14a (Emission)

Center Number	Atomic Number	Atomic Type	Coo X	ordinates (Y	Angstroms) Z
1	6	0	-1.707729	-0.321635	-0.328436
2	6	0	-0.955743	0.841748	-0.041755
3	6	0	-0.978983	-1.477836	-0.708976
4	6	0	0.408738	0.865065	-0.141772
5	1	0	-1.469561	1.740591	0.276319
6	6	0	0.384231	-1.462554	-0.821807
7	1	0	-1.529100	-2.391236	-0.905388
8	6	0	1.134472	-0.286538	-0.548284
9	1	0	0.927337	1.792665	0.067459
10	1	0	0.892152	-2.381154	-1.090909
11	6	0	7.244193	-0.483064	2.854946
12	1	0	7.747041	-1.394799	2.499177
13	1	0	7.330314	-0.479439	3.953414
14	6	0	7.927989	0.734820	2.287086
15	1	0	8.956832	0.792959	2.6/5081
16	1	0	7.397252	1.635943	2.613127
1/	6	0	8.8/9438	-0.061488	0.253113
18	1	0	9.100825	-0.960369	0.849826
19	l	0	9.822553	0.496646	0.138069
20	6	0	8.365016	-0.513805	-1.088043
21	1	0	/.418//2	-1.056085	-0.94/104
22	1 C	0	9.092412	-1.209887	-1.528413
23	6	0	6.8/2/51	0.733500	-2.4/1142
24	1	0	6.455048	-0.233646	-2.796149
25	1 C	U	6.939808	1.3/5/25	-3.355657
20	6	0	5.959009	1.355858	-1.439615
27	1	0	6.322981 5.062420	2.338021	-1.100506
20	I 6	0	3 700363	1 990097	-0.330124
29	0	0	2 926900	2 207054	-1 6/1315
21	1	0	4 000232	2.207034	-0.502640
32	I 6	0	3 201102	0 7080/7	-0.071156
33	1	0	2 746236	1 251255	0.757690
34	1	0	4 186544	0 333060	0.364483
35	É	0	3 221899	-1 317246	-1 357029
36	1	0	4 006428	-0 836332	-1 953257
37	1	0	2 552410	-1 814412	-2 059514
38	£	0	3.866128	-2.329689	-0.430145
39	1	õ	4.013813	-3.281080	-0.964836
40	1	Õ	3,202091	-2.528234	0.426811
41	÷ 6	Õ	5.649756	-2.479974	1.125721
42	1	õ	5.301554	-3.521763	1.173210
43	1	Õ	6.738160	-2.510721	0.987204
44	6	0	5.299865	-1.754851	2.406250

45	1	0	4.214495	-1.604685	2.461136
46	1	0	5.594096	-2.363871	3.275408
47	7	0	2.492338	-0.264339	-0.660888
48	8	0	4.662590	1.445241	-1.997658
49	8	0	8.182102	0.577361	-1.974411
50	8	0	7.911032	0.748748	0.878636
51	8	0	5.888010	-0.473012	2.465491
52	8	0	5.110065	-1.818658	-0.002225
53	6	0	-5.111643	-1.262349	-0.223416
54	6	0	-4.046162	0.712842	0.026961
55	7	0	-5.241615	0.074158	0.022749
56	6	0	-6.356786	0.855452	0.231459
57	6	0	-7.554694	0.154962	0.208473
58	6	0	-7.519399	-1.237739	-0.025391
59	6	0	-6.336517	-1.970661	-0.243147
60	1	0	-8.500512	0.657971	0.362073
61	1	0	-6.373880	-3.036489	-0.422488
62	6	0	-4.382278	2.102372	0.256768
63	6	0	-5.823769	2.168758	0.388850
64	6	0	-3.639003	3.278188	0.346873
65	6	0	-6.451731	3.397121	0.620925
66	6	0	-5.679985	4.539485	0.713155
67	6	0	-4.284470	4.484939	0.574429
68	1	0	-3.701953	5.397616	0.643805
69	1	0	-7.532214	3.447768	0.722982
70	1	0	-2.560501	3.275770	0.232332
71	7	0	-3.824616	-1.549568	-0.385458
72	6	0	-3.127259	-0.357059	-0.230582
73	1	0	-6.160012	5.496964	0.891771
74	6	0	-8.784039	-2.006002	-0.053976
75	8	0	-8.855063	-3.199061	-0.252801
76	8	0	-9.865735	-1.245394	0.165529
77	6	0	-11.121169	-1.919131	0.152113
78	1	0	-11.873692	-1.156170	0.343642
79	1	0	-11.298899	-2.386384	-0.819438
80	1	0	-11.157012	-2.685483	0.930083

Excitation energies and oscillator strengths 14a (Emission)

Excited State	1:	Singlet-A <s**2>=0</s**2>	2.5926 eV	478.23 nm	f=1.0962
		156 -> 157	-0.69325		
This stat	e for o	ptimization and	/or second-or	der correct	ion.
Tot Copying the exc	ited sta	gy, E(TD-HF/TD- ate density for densit	DFT) = -1969 this state as Y.	.6813/9/8 s the 1-par [.]	ticle RhoCI
Excited State	2:	Singlet-A	3.1928 eV	388.33 nm	f=0.0798
		<s**2>=0</s**2>	.000		
		155 -> 157	0.19409		
		156 -> 158	-0.66664		
Excited State	3:	Singlet-A <s**2>=0</s**2>	3.4624 eV	358.08 nm	f=0.2660
		155 -> 157	0.65102		
		156 -> 157	-0.10038		
		156 -> 158	0.19238		
Excited State	4:	Singlet-A <s**2>=0</s**2>	3.7223 eV	333.08 nm	f=0.2713
		155 -> 158	-0.15604		
		156 - > 159	-0.27740		
		156 -> 160	-0.57321		
		156 -> 161	0.14173		

Excited State	5:	Singlet-A 3.7320 eV 332.22 nm f=0.0716 <s**2>=0.000 156 -> 159 -0.59049 156 -> 160 0.27546 156 -> 162 0.12362 156 -> 163 -0.17639</s**2>
Excited State	6:	Singlet-A 3.8254 eV 324.11 nm f=0.0473 <s**2>=0.000 154 -> 157 -0.47133 155 -> 158 0.44304 156 -> 160 -0.17536</s**2>
Excited State	7:	Singlet-A 3.9762 eV 311.81 nm f=0.0211 <s**2>=0.000 156 -> 160 -0.14046 156 -> 162 0.55699 156 -> 163 0.28400 156 -> 164 -0.11824 156 -> 167 -0.13864 156 -> 170 0.12008</s**2>
Excited State	8:	Singlet-A 4.0154 eV 308.77 nm f=0.0174 <s**2>=0.000 156 -> 159 0.11491 156 -> 161 0.63322 156 -> 166 0.16171 156 -> 169 0.11934</s**2>
Excited State	9:	Singlet-A 4.0362 eV 307.18 nm f=0.1409 <s**2>=0.000 150 -> 157 -0.12012 154 -> 157 -0.10389 156 -> 161 -0.15518 156 -> 162 -0.19324 156 -> 168 -0.17588 156 -> 169 0.34984 156 -> 170 0.31615 156 -> 171 -0.18501 156 -> 172 0.24751</s**2>
Excited State	10:	Singlet-A 4.1110 eV 301.59 nm f=0.0056 <s**2>=0.000 156 -> 163 -0.14428 156 -> 164 -0.60354 156 -> 165 -0.17283 156 -> 168 -0.24018</s**2>

Cartesian coordinates (in Å) 14a-Ba(ClO₄)₂ (UV/Vis).

Standard orientation:

Center Number	Atomic Number	Atomic Type	Х	Coordinates Y	(Angstroms) Z
1	6	0	-0.368426	2.475186	-1.322086
2	6	0	0.007083	3.208431	-0.187168
3	6	0	0.587005	2.292291	-2.327565
4	6	0	1.332887	3.551111	0.025808
5	1	0	-0.718324	3.387760	0.595399
6	6	0	1.905101	2.683499	-2.143247
7	1	0	0.317807	1.756979	-3.229236
8	6	0	2.338264	3.185391	-0.898411
9	1	0	1.589477	4.017927	0.964546
10	1	0	2.606258	2.494443	-2.939017
11	6	0	3.516740	-3.323247	0.977044
12	1	0	3.855573	-3.195775	2.013850
13	1	0	4.148334	-4.087376	0.504955
14	6	0	2.079447	-3.795503	0.902631
15	1	0	1.977693	-4.748327	1.434557
16	1	0	1.800208	-3.935651	-0.141146
17	6	0	0.866924	-2.880523	2.819296
18	1	0	0.993658	-3.898410	3.204028
19	1	0	-0.176652	-2.588473	2.909043
20	6	0	1.729843	-1.918875	3.620258
21	1	0	2.771885	-2.257306	3.697130
22	1	0	1.315194	-1.845492	4.633826
23	6	0	2.262081	0.397521	3.764418
24	1	0	3.304264	0.149590	4.012255
25	1	0	1.694057	0.518451	4.695660
26	6	0	2.187237	1.676462	2.955573
27	1	0	2.611583	2.505268	3.530733
28	1	0	1.145020	1.900331	2.729439
29	6	0	4.163/9/	2.134/24	1.610213
30	1	0	4.819690	1.419633	1.119946
31		0	4.553646	2.350954	2.612403
32	6	0	4.122286 E 124644	3.430723	0.793512
31	1	0	2 106712	J.04000J 1 172001	0./04/4/
25	I 6	0	1 600053	4.173901 2.021544	-1 545695
36	1	0	5 667803	2.021344	-1.115774
37	1	0	4 604288	3 401388	-2 471972
38	1	0	4.004200	1 342782	-1 956631
39	1	0	5 674091	1 208594	-2 526214
40	1	0	3 914408	1 054433	-2 605036
41	-	0	5.136778	-0.838204	-1.172796
42	1	0	4.525351	-1.217013	-1.994984
43	1	0	6.190471	-0.831098	-1.489065
44	6	0	5.008316	-1.756066	0.016156
45	1	0	5.563035	-2.672984	-0.215357
46	1	0	5.453091	-1.301133	0.911453
47	7	0	3.690326	3.266287	-0.589369
48	8	0	2.877575	1.512828	1.711205

49	8	0	1.694542	-0.647551	2.984131
50	8	0	1.153735	-2.842178	1.419565
51	8	0	3.643379	-2.092889	0.268697
52	8	0	4.745021	0.485576	-0.821853
53	56	0	1.157387	-0.358529	0.155087
54	6	0	-2.919030	1.922261	-1.028762
55	6	0	-2.579515	-0.308866	-1.209843
56	6	0	-4.803868	0.622642	-0.627794
57	6	0	-3.082611	-1.603549	-1.089246
58	1	0	-2.453006	-2.471005	-1.223522
59	6	0	-5.306034	-0.654156	-0.506281
60	1	0	-6.326929	-0.836403	-0.208671
61	6	0	-4.433012	-1.752252	-0.747529
62	6	0	-5.162811	2.020662	-0.426225
63	6	0	-3.991216	2.823834	-0.671977
64	6	0	-6.360100	2.623408	-0.044090
65	1	0	-7.242428	2.023611	0.146205
66	6	0	-4.054873	4.210533	-0.526707
67	6	0	-5.260045	4.787955	-0.145947
68	1	0	-5.321801	5.863753	-0.029545
69	6	0	-6.400991	4.005629	0.093637
70	1	0	-3.179479	4.822333	-0.708262
71	7	0	-3.491748	0.684811	-1.000587
72	1	0	-7.324281	4.487617	0.391897
73	7	0	-1.372540	0.278298	-1.402050
74	6	0	-1.569903	1.637069	-1.302241
75	6	0	-4.926981	-3.149285	-0.601598
76	8	0	-4.250614	-4.139999	-0.753656
77	8	0	-6.238199	-3.199459	-0.272753
78	6	0	-6.784196	-4.517769	-0.104180
79	1	0	-7.829933	-4.367763	0.154709
80	1	0	-6.693616	-5.088302	-1.029387
81	1	0	-6.261397	-5.046311	0.693955
82	17	0	1.732565	-1.977750	-2.852297
83	17	0	-1.632866	0.117351	2.289092
84	8	0	2.929309	-2.842321	-2.991287
85	8	0	2.176615	-0.574609	-2.444474
86	8	0	0.878311	-2.465667	-1.697289
87	8	0	0.952136	-1.922026	-4.094278
88	8	0	-1.240104	-1.134499	1.534580
89	8	0	-0.686211	1.197084	1.787130
90	8	0	-1.434920	-0.086913	3.743253
91	8	0	-3.023865	0.488427	1.974072

Excitation energies and oscillator strengths 14a- $Ba(ClO_4)_2(UV/Vis)$.

Excited State	1:	Singlet-A	3.3230 eV	373.11 nm	f=0.2515
		<s**2>=0</s**2>	.000		
		208 -> 214	0.11692		
		209 -> 211	0.18609		
		209 -> 214	0.13615		
		210 -> 211	0.63690		
This state	<pre>State 1. Singlet A 3.6290 eV 575.11 mm 1=0.2515</pre>				
Tota	al Ene:	ray, E(TD-HF/TD-D	(FT) = -3516	.74521275	
Copving the exci	ted st	ate density for	, this state as	s the 1-par	ticle RhoCI
		densit	ν.	1	
			-		
Excited State	2:	Singlet-A	3.6696 eV	337.87 nm	f=0.0245
		<s**2>=0</s**2>	.000		
		209 -> 211	0.48168		
		210 -> 211	-0.16587		
		210 -> 212	-0.33272		
		210 -> 214	-0.29375		
Excited State	3:	Singlet-A	3.7001 eV	335.08 nm	f=0.0036
		<s**2>=0</s**2>	.000		

			209 -> 211 209 -> 212 210 -> 212 210 -> 213 210 -> 214	0.24248 -0.16391 0.55173 0.16649 -0.22585		
Excited	State	4:	Singlet-A <s**2>=0 208 -> 211 209 -> 211 209 -> 214 210 -> 211 210 -> 212 210 -> 214</s**2>	3.8240 eV .000 -0.31795 0.31564 0.25924 -0.20643 0.11076 0.38395	324.23 nm	f=0.0851
Excited	State	5:	Singlet-A <s**2>=0 209 -> 213 210 -> 212 210 -> 213 210 -> 216</s**2>	3.9318 eV .000 -0.11881 -0.20304 0.60472 0.22958	315.33 nm	f=0.0023
Excited	State	6:	Singlet-A <\$**2>=0 209 -> 215 210 -> 214 210 -> 215 210 -> 218	4.0155 eV .000 -0.12730 0.15864 0.63628 -0.12657	308.76 nm	f=0.0136
Excited	State	7:	Singlet-A <s**2>=0 208 -> 211 209 -> 211 209 -> 212 209 -> 214 209 -> 215 210 -> 215 210 -> 215 210 -> 216</s**2>	4.1088 eV .000 -0.22919 -0.15499 0.11264 0.42216 -0.10617 -0.37675 0.15839 0.12207	301.76 nm	f=0.1639
Excited	State	8:	Singlet-A <s**2>=0 209 -> 211 209 -> 212 209 -> 214 210 -> 212 210 -> 214 210 -> 216 210 -> 219</s**2>	4.1706 eV .000 0.12148 0.53609 -0.13144 0.11181 0.10805 0.31484 0.12536	297.28 nm	f=0.0048
Excited	State	9:	Singlet-A <s**2>=0 209 -> 212 210 -> 213 210 -> 216 210 -> 217 210 -> 218 210 -> 219 210 -> 221</s**2>	4.1941 eV .000 -0.38251 -0.21622 0.42540 -0.14254 0.10587 0.16796 0.16008	295.62 nm	f=0.0099
Excited	State	10:	Singlet-A <s**2>=0 209 -> 225 210 -> 213 210 -> 216 210 -> 217 210 -> 218 210 -> 219</s**2>	4.2659 eV .000 -0.10100 0.11636 -0.22098 -0.19508 0.12504 0.15173	290.64 nm	f=0.0499

210 ->	220	0.11005
210 ->	221	0.20574
210 ->	222	0.13792
210 ->	223	-0.15180
210 ->	224	-0.16349
210 ->	225	0.36954
210 ->	227	-0.13082

Cartesian coordinates (in Å) 14a-Ba(ClO₄)₂ (Emission)

Center Number	Atomic Number	Atomic Type	Сос Х	ordinates (An Y	ngstroms) Z
1	6	0	0.115104	-1.820811	-1.955880
2	6	0	-0.249072	-2.925752	-1.156141
3	6	0	-0.893291	-1.223360	-2.740466
4	6	0	-1.576028	-3.240665	-0.960816
5	1	0	0.506909	-3.434386	-0.569800
6	6	0	-2.217807	-1.576783	-2.586308
7	1	0	-0.631449	-0.412469	-3.410452
8	6	0	-2.611171	-2.502364	-1.593311
9	1	0	-1.806525	-4.038626	-0.270150
10	1	0	-2.949282	-1.064364	-3.189745
11	6	0	-2.843680	3.087131	1.970859
12	1	0	-3.077513	2.754915	2.991058
13	1	0	-3.446336	3.976404	1.748314
14	6	0	-1.382259	3.442580	1.815281
15	1	0	-1.100718	4.190067	2.565087
16	1	0	-1.212853	3.850810	0.820614
17	6	0	-0.151936	1.906957	3.225157
18	1	0	-0.132849	2.775630	3.892815
19	1	0	0.856148	1.513001	3.128685
20	6	0	-1.055404	0.837754	3.821778
21	1	0	-2.004857	1.246349	4.190664
22	1	0	-0.520555	0.375648	4.659439
23	6	0	-1.841215	-1.340965	3.405006
24	1	0	-2.700642	-1.099862	4.045447
25	1	0	-1.054034	-1.812606	4.005762
26	6	0	-2.266214	-2.284507	2.299068
27	1	0	-2.732775	-3.165843	2.752596
28	1	0	-1.391939	-2.607032	1.732055
29	6	0	-4.399082	-2.289671	1.175634
30	1	0	-5.132345	-1.518172	0.952111
31	1	0	-4.720536	-2.833998	2.073227
32	6	0	-4.321056	-3.273392	0.004157
33	1	0	-5.309109	-3.727980	-0.116579
34	1	0	-3.642473	-4.090991	0.243231
35	6	0	-4.975796	-1.938656	-1.980748
36	1	0	-5.925470	-2.327347	-1.610291
37	1	0	-4.924497	-2.193891	-3.045435
38	6	0	-5.000793	-0.400521	-1.866272
39	1	0	-6.040898	-0.087927	-2.034450

40	1	0	-4.386141	0.100043	-2.617290
41	6	0	-5.025629	1.320944	-0.291221
42	1	0	-4.658186	2.031993	-1.037675
43	1	0	-6.125097	1.333615	-0.290339
44	6	0	-4.542947	1.726999	1.076747
45	1	0	-5.117126	2.607422	1.385149
46	1	0	-4.713012	0.921561	1.803071
47	7	0	-3.939430	-2.664724	-1.260622
48	8	0	-3.177993	-1.616389	1.430882
49	8	0	-1.337906	-0.144496	2.836293
50	8	0	-0.547937	2.300158	1.918771
51	8	0	-3.161161	2.054950	1.049713
52	8	0	-4.578623	0.009024	-0.584120
53	56	0	-1.120289	0.256365	0.105595
54	6	0	2.642238	-1.629635	-1.312530
55	6	0	2.618753	0.627398	-1.381501
56	6	0	4.632062	-0.640268	-0.671152
57	6	0	3.276053	1.848384	-1.148933
58	1	0	2.796192	2.802101	-1.304462
59	6	0	5.303841	0.566841	-0.429839
60	1	0	6.316547	0.593462	-0.059495
61	6	0	4.602805	1.764177	-0.675031
62	6	0	4.786076	-2.067751	-0.590800
63	6	0	3.537767	-2.690144	-1.005869
64	6	0	5.846184	-2.876538	-0.190279
65	1	0	6.782217	-2.440113	0.137411
66	6	0	3.405305	-4.081275	-1.021172
67	6	0	4.481374	-4.862083	-0.621269
68	1	0	4.397307	-5.941123	-0.625673
69	6	0	5.683448	-4.259648	-0.209335
70	1	0	2.479993	-4.541410	-1.348184
71	7	0	3.354989	-0.478975	-1.123547
72	1	0	6.507382	-4.890100	0.103888
73	7	0	1.374610	0.231456	-1.769476
74	6	0	1.348595	-1.122938	-1.741838
75	6	0	5.281155	3.072625	-0.418489
76	8	0	4.761745	4.146289	-0.572319
77	8	0	6.547317	2.930318	0.006719
78	6	0	7.237835	4.151138	0.269119
79	1	0	8.232419	3.862613	0.598710
80	1	0	7.291736	4.757529	-0.635395
81	1	0	6.723163	4.717384	1.045822
82	17	0	-1.942572	2.805766	-2.068896
83	17	0	1.655770	-1.062351	1.997610
84	8	0	-2.960229	3.755757	-1.616365
85	8	0	-2.521030	1.419894	-2.060094
86	8	0	-0.822060	2.760194	-1.085262
87	8	0	-1.455972	3.134098	-3.393570
88	8	0	1.471836	0.247810	1.306037
89	8	0	0.643781	-1.972436	1.385772
90	8	0	1.384975	-0.912173	3.431868
91	8	0	3.000322	-1.565787	1.768510

Excitation energies and oscillator strengths 14a-Ba(ClO₄)₂ (Emission).

Excited State 1: Singlet-A 3.0199 eV 410.56 nm f=0.3328 <S**2>=0.000 209 -> 215 0.10989 210 -> 211 0.67571 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -3516.75124668

Copying t	he excit	ed stat	e density de	for this ensity.	state as	the 1	-part	icle RhoCI
Excited	State	2:	Singlet <s**< td=""><td>A 3.</td><td>5288 eV</td><td>351.35</td><td>5 nm</td><td>f=0.0603</td></s**<>	A 3.	5288 eV	351.35	5 nm	f=0.0603
		2	208 -> 211	0	.10922			
		2	209 -> 211	0	.49835			
		2	210 -> 212	-0	.10427			
		2	210 -> 215	-0	.44317			
Excited	State	3:	Singlet <s**< td=""><td>A 3.</td><td>6275 eV</td><td>341.79</td><td>) nm</td><td>f=0.0102</td></s**<>	A 3.	6275 eV	341.79) nm	f=0.0102
		2	209 -> 212	0	.11460			
		2	210 -> 212	0	.66336			
		2	210 -> 213	0	.13656			
Excited	State	4:	Singlet <s**< td=""><td>A 3. 2>=0.000</td><td>7848 eV</td><td>327.58</td><td>3 nm</td><td>f=0.2718</td></s**<>	A 3. 2>=0.000	7848 eV	327.58	3 nm	f=0.2718
		2	208 -> 211	-0	.35826			
		2	209 -> 211	0	.37843			
		2	209 -> 215	-0	.13203			
		4	210 = 211	0	.11297			
		2	210 > 213 210 -> 216	-0	11130			
			210 -> 217	0	.10621			
		2	210 -> 219	- 0	.15021			
Excited	State	5:	Singlet <s**< td=""><td>A 3.</td><td>8425 eV</td><td>322.60</td><td>5 nm</td><td>f=0.0155</td></s**<>	A 3.	8425 eV	322.60	5 nm	f=0.0155
		2	209 -> 211	-0	.14941			
		2	210 -> 212	-0	.13188			
		2	210 -> 213	0	.51096			
		2	210 -> 214	0	.29233			
		2	210 -> 216	-0	.22180			
		2	210 -> 217	0	.16510			
		2	210 -> 219	-0	.10353			
Excited	State	6:	Singlet	A 3.	9299 eV	315.49	9 nm	f=0.0184
		-	210 -> 213	-0	.40986			
		-	210 -> 214	0	.47661			
		2	210 -> 217	0	.12896			
		2	210 -> 219	-0	.18030			
Excited	State	7:	Singlet-	A 3.	9802 eV	311.50) nm	f=0.0446
		,	$< S^{**}$	2>=0.000	27275			
		4	210 = 214	0	.3/3/5			
		2	210 > 213 210 -> 216	0	19835			
		-	210 -> 217	-0	.21134			
		2	210 -> 219	0	.43560			
Excited	State	8:	Singlet <s**< td=""><td>A 4.</td><td>0357 eV</td><td>307.22</td><td>2 nm</td><td>f=0.0404</td></s**<>	A 4.	0357 eV	307.22	2 nm	f=0.0404
		2	208 -> 211	-0	.15520			
		2	209 -> 215	-0	.16312			
		2	210 -> 215	-0	.10358			
		2	210 -> 217	0	.12684			
		2	210 -> 218	-0	.11449			
		2	210 -> 219	0	.23060			
		2	210 -> 220	00	.14109 27122			
		2	210 -> 221	-0	.24869			
		2	210 -> 223	0	.36698			
Excited	State	9:	Singlet-	A 4.	1260 eV	300.49	9 nm	f=0.0174
			<s**< td=""><td>2>=0.000</td><td></td><td></td><td></td><td></td></s**<>	2>=0.000				
		2	208 -> 211	0	.10997			

		209 -> 212	0.10824		
		210 -> 213	0.10633		
		210 -> 215	0.13224		
		210 -> 216	0.47960		
		210 -> 217	0.16154		
		210 -> 218	0.22494		
		210 -> 219	-0.20520		
		210 -> 222	-0.14382		
		210 -> 223	0.19686		
Excited State	10:	Singlet-A	4.1575 eV	298.22 nm	f=0.1962
		<s**2>=</s**2>	0.000		
		208 -> 211	0.36244		
		209 -> 211	0.17931		
		209 -> 215	0.34626		
		210 -> 215	0.30002		
		210 -> 216	-0.19576		
		210 -> 218	-0.12625		
		210 -> 223	0.13722		

Calculated Emission Spectrum 14a-Ba

Figure S4. Emission spectrum of compound **14a-Ba**(ClO₄)₂, calculated at the TDDFT(Nstates=5) M06/6-311++G**&Def2TZVPP level of theory. The main transitions and the KS-MOs associated with them are indicated, as well as the respective emission wavelenghts (λ_{em}) and the oscillator strengths (f)

Cartesian coordinates (in Å) of model molecule 16.

Center	Atomic	Atomic	Coor	dinates (Ang	(stroms)
Number	Number	Туре	Χ	Y	
1	6	0	-3.383949	-0.087648	1.195175
2	6	0	-4.113615	-0.103943	-0.000268
3	6	0	-3.383934	-0.082630	-1.195692
4	6	0	-2.003072	-0.063285	-1.187964
5	6	0	-1.301587	-0.056822	-0.000214
6	6	0	-2.003011	-0.068293	1.187453
7	7	0	0.137920	-0.031272	-0.000155
8	6	0	0.802721	-1.257292	-0.001340
9	6	0	2.288569	-1.219654	-0.001054
10	6	0	2.969217	0.018879	0.000071
11	6	0	2.245033	1.232494	0.000938
12	6	0	0.758782	1.217362	0.000754
13	6	0	4.374763	0.043829	0.000305
14	6	0	5.030216	1.301192	0.001407
15	6	0	4.316229	2.460442	0.002220
16	6	0	2.905112	2.426572	0.001983
17	6	0	2.990572	-2.389566	-0.001906
18	6	0	4.402020	-2.373330	-0.001651
19	6	0	5.074433	-1.189494	-0.000580
20	8	0	0.197950	-2.285987	-0.002499
21	8	0	0.117964	2.224193	0.001366
22	7	0	-5.503515	-0.156028	-0.000645
23	6	0	-6.204752	0.135249	1.230808
24	6	0	-6.204363	0.148255	-1.229265
25	1	0	2.337655	3.337227	0.002630
26	1	0	4.821345	3.408739	0.003046
27	1	0	6.150185	-1.177106	-0.000396
28	1	0	6.105731	1.326982	0.001592
29	1	0	2.455748	-3.319766	-0.002774
30	1	0	4.940447	-3.303114	-0.002312
31	1	0	-1.470352	-0.057755	2.121284
32	1	0	-1.470427	-0.048908	-2.121750
33	1	0	-3.883676	-0.082157	-2.142935
34	1	0	-3.883564	-0.090800	2.142470
35	1	0	-5.954940	-0.566714	-2.003465
36	1	0	-5.989882	1.148855	-1.604372
37	1	0	-7.268276	0.071882	-1.055926
38	1	0	-7.268463	0.055982	1.057470
39	1	0	-5.994121	1.133510	1.614350
40	1	0	-5.951870	-0.585292	1.998659

7. References

- 1 D. Cheng, X. Liu, Y. Xie, H. Lv, Z. Wang, H. Yang, A. Han, X. Yang, L. Zang, A Ratiometric Fluorescent Sensor for Cd²⁺ Based on Internal Charge Transfer, *Sensors*, 2017, **17**, 2517.
- 2 J. L. Hutter, J. Bechhoefer, Calibration of atomic-force microscope tips, *Rev. Sci. Instrum.*, 1993, **64**, 1868–1873.
- J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, *Nat. Methods*, 2012, 9, 676–682.
- 4 J. W. Sibert, P. B. Forshee, G. R. Hundt, A. L. Sargent, S. G. Bott and V. Lynch, Wurster's Crowns: A Comparative Study of ortho- and para-Phenylenediamine-Containing Macrocyclic Receptors, *Inorg. Chem.*, 2007, **46**, 10913–10925.
- 5 P. Thapa, N. K. Byrnes, A. A. Denisenko, J. X. Mao, A. D. McDonald, D. A. Newhouse, T. T. Vuong, K. Woodruff, K. Nam, D. R. Nygren, B. J. P. Jones and F. W. Foss Jr., Demonstration of Selective Single-Barium Ion Detection with Dry Diazacrown Ether Naphthalimide Turn-on Chemosensors, ACS Sens., 2021, 6, 192–202.
- 6 S.-W. Chen, T. T. A. Hong, C.-T. Chiang, L.-K. Chau and C.-L. Huang, Versatile Thioland Amino-Functionalized Silatranes for in-situ polymerization and Immobilization of Gold Nanoparticles, *J. Taiwan Inst. Chem. Eng.*, 2022, **132**, 104129.
- 7 X.-X. Zhang and S L. Buchwald, Efficient Synthesis of N-Aryl-Aza-Crown Ethers via Palladium-Catalyzed Amination, *J. Org. Chem.*, 2000, **65**, 8027–8031.
- 8 P. Deveci, B. Taner, Z. Ustundag, E. Ozcan, A. O. Solak and Z. Kilic, Synthesis, enhanced spectroscopic characterization and electrochemical grafting of N-(4aminophenyl)aza-18-crown-6: Application of DEPT, HETCOR, HMBC-NMR and x-ray photoelectron spectroscopy, *J. Mol. Struct.*, 2010, **982**, 162–168.
- 9 B. Das, K. Venkateswarlu, K. Damodar and K. Suneel, Ammonium acetate catalyzed improved method for the regioselective conversion of olefins into halohydrins and haloethers at room temperature, *J. Mol. Catal. A: Chem.*, 2007, **269**, 17–21.
- 10 T. Ishiyama, M. Murata and N. Miyaura, Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters, *J. Org. Chem.*, 1995, **60**, 7508–7510.
- 11 D. H. Byun, E. Y. Canales, L. P. Debien, P. Jansa, R. A. Lee, J. A. Loyer-Drew, S. Perreault, H.-J. Pyun, R. D. Saito, M. S. Sangi, A. J. Schirer, M. E. Shatskikh, J. G. Taylor, J. A. Treiberg, J. J. Van Veldhuizen and L. Xu, Inhibitors of Peptidylarginine Deiminases, WO2022140428A2, 2022.
- 12 C. F. Claiborne, S. Critchley, S. P. Langston, E. J. Olhava, S. Peluso, G. S. Weatherhead, S. Vyskocil, I. Visiers, H. Mizutani and C. Cullis, Preparation of carbocyclic purine nucleoside analogs as antitumor agents and inhibitors of E1 activating enzymes, WO2008019124, 2008.
- 13 R. Semwal, A. Joshi, R. Kumar and S. Adimurthy, Annulation of imidazo[1,2-*a*]pyridines under metal-free conditions, *New J. Chem.*, 2020, **44**, 20530–20534.
- É. Lévesque, W. S. Bechara, L. Constantineau-Forget, G. Pelletier, N. M. Rachel, J. N. Pelletier and A. B. Charette, General C–H Arylation Strategy for the Synthesis of Tunable Visible Light-Emitting Benzo[a]imidazo[2,1,5-c,d]indolizine Fluorophores, J. Org. Chem., 2017, 82, 5046–5067.
- 15 A. Sanchez-Sanchez, I. Rivilla, M. Aguirre, A. Basterretxea, A. Etxeberria, A. Veloso, H. Sardon, D. Mecerreyes and F. P. Cossío, Enantioselective Ring-Opening Polymerization of *rac*-Lactide Dictated by Densely Substituted Amino Acids, *J. Am. Chem. Soc.*, 2017, **139**, 4805–4814.
- 16 R. Chinchilla, D. J. Dodsworth, C. Nájera and J. M. Soriano, Ammonium salts from polymer-bound *N*-hydroxysuccinimide as solid-supported reagents for EDC-mediated amidations, *Tetrahedron Lett.*, 2003, **44**, 463–466.