Supplementary Information (SI) for RSC Applied Interfaces. This journal is © The Royal Society of Chemistry 2024

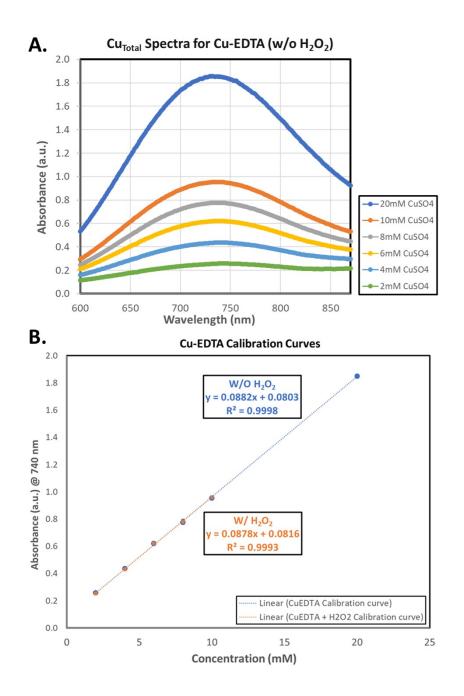
Colorless Copper-Containing Coatings With High Antimicrobial Efficacy and Formulation Versatility

Johnathan D. Culpepper¹, Anthony G. Frutos¹, Jenna B. Yehl¹, Theresa Chang¹, Joydeep Lahiri^{1*}

¹Corning Incorporated, 1 Riverfront Plaza, Corning, NY 14831, USA

*Corresponding author

Supplementary Information


Table of Contents

Copper Quantification Method Development
Figure S1: Visual example of an CGC + Phosphite extraction sample prepared by the Neocuproine method showing crystallization and precipitation of the copper in a microcentrifuge tubes
Figure S2: A. UV-vis data for the copper sulfate/EDTA calibration curve. B. Absorbance at 740 nm versus copper(II) concentration calibration curves and line of best fit
Figure S3: UV-vis spectrum for CGC powder extracts with TEP. A. Sample Cu_{Tot} curves. B. Curves used to derive $[Cu^{2+}]$. $[Cu_{Tot}]$ determination was made by adding 700 µl of 20 mM EDTA, 388 µl H ₂ O, 42 µl of copper extract solution, 20 µL of H ₂ O ₂ . $[Cu^{2+}]$ determination was made by adding 700 µl of 20 mM EDTA, 398 µl H ₂ O, 42 µl of copper extract solution. $[Cu^{1+}]$ is calculated by taking the difference between $[Cu_{Tot}]$ and $[Cu^{2+}]$
³¹ P{ ¹ H} NMR Parameters for Copper(I) Coordination Environment
Figure S4: ³¹ P NMR spectrum of CGC extracts with TEP showing an asymmetric quartet structure due to spin-spin coupling of the phosphorus nuclei to the copper nucleus (63 Cu, 65 Cu; <i>I</i> = 3/2) in water5
Antimicrobial Glass Film Surface Metrology7
Figure S5: Zygo film thickness measurement for Ferro 221 series coating on Corning [®] EAGLE XG [®]
Glass with no copper glass-ceramic (CGC) powder or CGC powder extract, flash cured at 150 °C7
Glass with no copper glass-ceramic (CGC) powder or CGC powder extract, flash cured at 150 °C7 Figure S6: Zygo film surface roughness measurement for Ferro 221 series coating on Corning EAGLE XG Glass with no copper glass-ceramic (CGC) powder or CGC powder extract, flash cured at 150 °C8
Figure S6: Zygo film surface roughness measurement for Ferro 221 series coating on Corning EAGLE

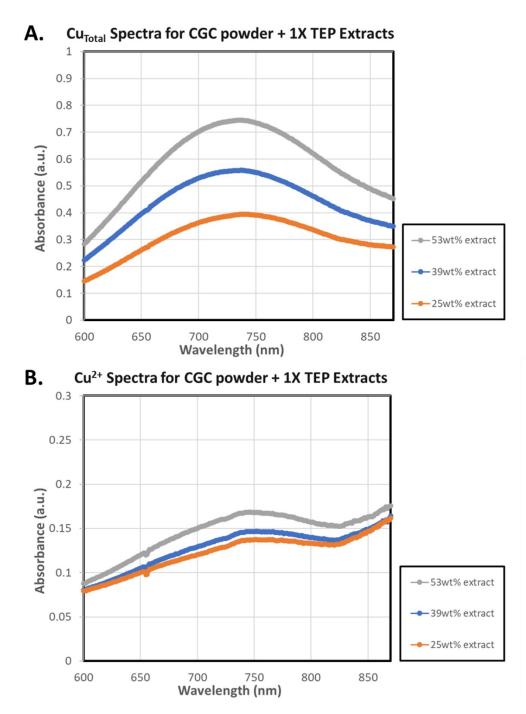

Copper Quantification Method Development

Figure S1: Visual example of CGC + Phosphite extraction samples prepared by the Neocuproine method showing crystallization and precipitation of the copper in microcentrifuge tubes.

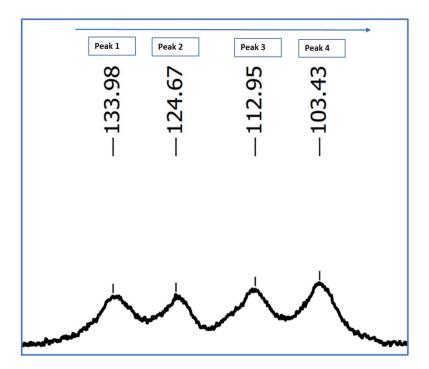


Figure S2: A. UV-vis data for the copper sulfate/EDTA calibration curve. **B.** Absorbance at 740 nm versus Cu²⁺ concentration calibration curves and line of best fit.

Figure S3: UV-vis spectrum for CGC powder extracts with TEP. **A.** Sample Cu_{Tot} curves. **B.** Curves used to derive $[Cu^{2+}]$. $[Cu_{Tot}]$ determination was made by adding 700 µl of 20 mM EDTA, 388 µl H₂O, 42 µl of copper extract solution, 20 µL of H₂O₂. $[Cu^{2+}]$ determination was made by adding 700 µl of 20 mM EDTA, 398 µl H₂O, 42 µl of copper extract solution. $[Cu^{1+}]$ is calculated by taking the difference between $[Cu_{Tot}]$ and $[Cu^{2+}]$.

³¹P{¹H} NMR Parameters for Copper(I) Coordination Environment

Figure S4: ³¹P{¹H} NMR spectrum of CGC extract with TEP showing an asymmetric quartet structure due to spin-spin coupling of the phosphorus nuclei to the copper nucleus (63 Cu, 65 Cu; *I* = 3/2) in water.

The following expressions were used to investigate the possible relationship between the ³¹P NMR parameters and the coordination environment about the copper(I) atom [1-5].

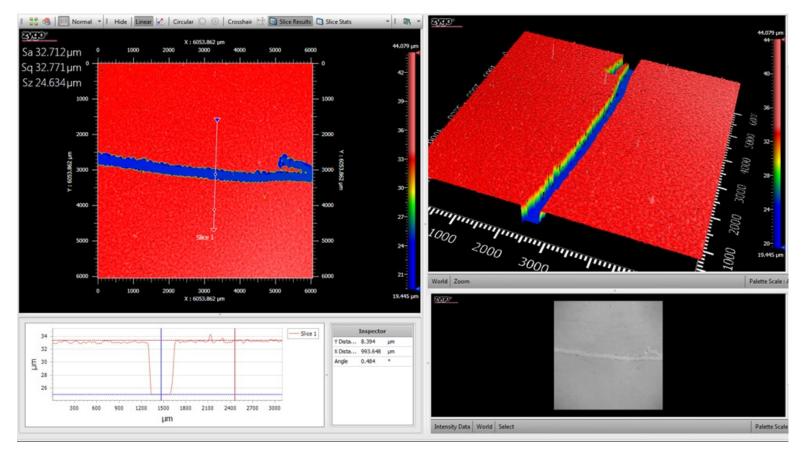
$$\Delta V1 (kHz) = \frac{[121.41 \times (peak \ 1 - peak \ 2)]}{1000}$$

$$\Delta V2 (kHz) = \frac{[121.41 \times (peak 2 - peak 3)]}{1000}$$

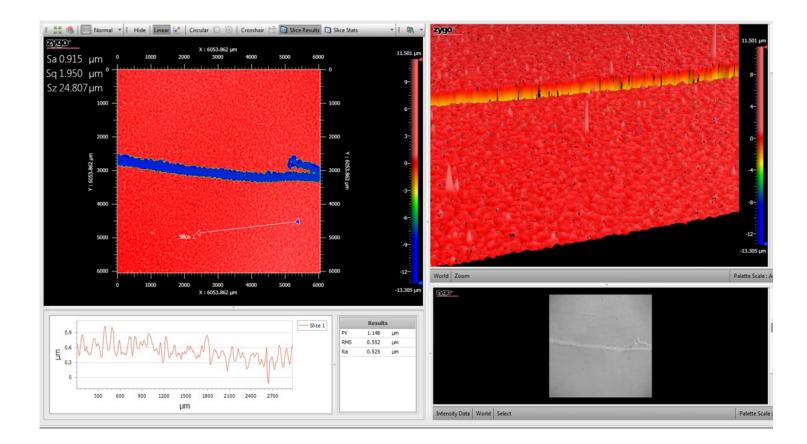
$$\Delta V3 \ (kHz) = \frac{[121.41 \times (peak \ 3 - peak \ 4)]}{1000}$$

$$\Delta Vi (kHz) = \frac{\left[\Delta V1 + \Delta V2 + \Delta V3\right]}{3}$$

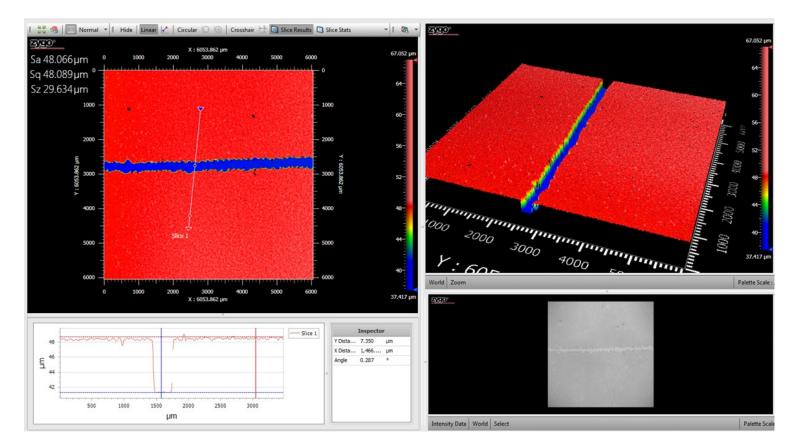
Center δ	Peak 1	Peak 2	Peak 3	Peak 4
ppm	ppm	ppm	ppm	ppm
118.71	133.98	124.67	112.95	103.43


Table 1. Summary calculations of ³¹P{¹H} NMR parameters used to determine number of phosphorous atoms coordinated to the copper(I) center.

				118.71	Center (ppm)		
9.31	ppm	1130.33	Hz	1.13	ΔV1	kHz	Low field line spacing
11.72	ppm	1422.93	Hz	1.42	ΔV2	kHz	
9.52	ppm	1155.82	Hz	1.16	∆V3	kHz	High field line spacing
							*Coordination number
				1.24	Δ Vi (average)	kHz	information
				1.02	∆V3/V1 (ratio)		Asymmetry of the line spacing


*How to interpret the line spacing <∆Vi> of the quartet?						
~1.6	kHz	One coordinated phosphine				
1.2	kHz	Two coordinated phosphine				
0.9	kHz	Three coordinated phosphine				

	Interpretation of results
1.24	The derived ΔVi_{Av} value suggests a two coordinate phosphorous-copper(I) complex is present.



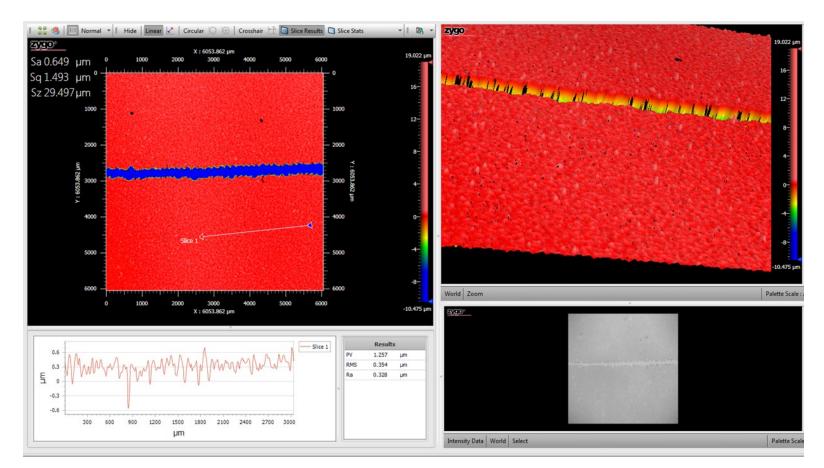

Figure S5: Zygo film thickness measurement for Ferro 221 series coating on Corning[®] EAGLE XG[®] Glass with no copper glass-ceramic (CGC) powder or CGC powder extract, flash cured at 150 °C.

Figure S6: Zygo film surface roughness measurement for Ferro 221 series coating on Corning EAGLE XG Glass with no copper glass-ceramic (CGC) powder or CGC powder extract, flash cured at 150 °C.

Figure S7: Zygo film thickness measurement for Ferro 221 glass coating on Corning EAGLE XG Glass dosed with copper glass-ceramic (CGC) powder extracts with triethyl phosphite (TEP) ([Cu]_{Tot} = 600ppm) and cured at 120 °C.

Figure S8: Zygo film surface roughness measurement for Ferro 221 glass coating on Corning EAGLE XG Glass dosed with copper glass-ceramic (CGC) powder extracts with triethyl phosphite (TEP) ([Cu]_{Tot} = 600ppm) and cured at 120 °C.

References:

- 1. Bowmaker, G.A., et al., *Structural, vibrational and solid-state NMR studies of the halogenocuprate (I) complexes [(PPh3) 2Cul2]-and [(PPh3) Cul3Cu (PPh3)].* Inorganic Chemistry, 1989. **28**(20): p. 3883-3888.
- 2. Tisato, F., et al., *Synthesis, characterization, and crystal structure of the water soluble copper (I) complex with trisulfonated triphenylphosphine.* Inorganic Chemistry, 2001. **40**(6): p. 1394-1396.
- Kroeker, S., et al., Anisotropy in the31P, 63/65Cu Indirect Spin–Spin Coupling and31P Nuclear Shielding Tensors of Linear Copper (I) Phosphines. Journal of Magnetic Resonance, 1998. 135(1): p. 208-215.
- 4. Muetterties, E. and C. Alegranti, *Solution structure and kinetic study of metal-phosphine and-phosphite complexes. I. Silver (I) system.* Journal of the American Chemical Society, 1972. **94**(18): p. 6386-6391.
- 5. King, R.W., T. Huttemann, and J. Verkade, *63 Cu–and 65 Cu–31 P spin–spin coupling in copper (I) trialkyl phosphite complexes.* Chemical Communications (London), 1965(21): p. 561a-561a.