Supporting Information

Fluorescent Histidine-derived Biodynamers as

Biocompatible and Highly Water-Soluble

Copper(II)-Sensors

Lena Zeroug-Metz¹, Mohamed A. M. Kamal², Justine Bassil², Kalanika Elamaldeniya³, Bo Hyun Ryu³, Eric Buhler⁴, Sangeun Lee^{1,2*}

¹ Pharmaceutical Materials and Processing, Department of Pharmacy,

Saarland University, Campus C4. 1, 66123, Saarbrücken, Germany

² Helmholtz Institute of Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for

Infection Research (HZI),

Campus E8.1, 66123 Saarbrücken, Germany

³ Korea Institute of Science and Technology Europe, Forschungsgesellschaft mbH,

Campus E7.1, 66123 Saarbrücken, Germany

⁴ Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057,

Université Paris Cité, Physics Department, Bâtiment Condorcet, 75013 Paris, France

Scheme S1. Synthesis of amino acid-derived biodynamers. R_1 represents different amino acid-derived sidechains as shown in Scheme 1.¹

Figure S1. Scheme of HisBD synthesis and ¹H-NMR spectrum of 10 mM HisBD (500 MHz, 10 mM d-actetate solution). The aldehyde proton peak (marked at 9.47 ppm) was monitored at reaction time 0h (black) and 24h (red).

Figure S2. Dynamic light scattering (DLS) analysis of HisBD (10 mM) in pH 7.4 phosphate buffer (10 mM). The Z-Average and PDI were measured at different time points up to 1 month. All samples remained in solution under light exclusion and room temperature. Data represented as mean \pm SD: (n=3)

Biodynamer	λ_{abs} (nm)	λ_{em} (nm)
HisBD	320	525
LysBD	320	495
ArgBD	315	460
AspBD	310	450
GluBD	310	455

Table S1. Absorption (λ_{abs}) and emission (λ_{em}) maxima of 0.1 mM amino acid-derived biodynamers with a concentration in 10 mM pH 7.4 phosphate buffer.

Figure S3. Static Light Scattering (SLS) Analysis of HisBD with and without Cu(II) in 10 mM pH 7.4 phosphate buffer (pH 7.4). The graph shows the relative molecular weight (M_w) of HisBD in % before (pink) and after the addition of 0.5 equivalents Cu(II) (black) (in %). ANOVA analysis confirmed that the difference in M_w (%) between the samples is not significant. Data is presented as mean ± SD: (n=3)

Figure S4. Normalized absorption (black) and emission spectra (orange) of carbazole hexaethylene glycol **(A)**, and histidine-biodynamer (HisBD) **(B)**.

Figure S5. (A)-(D) DLS intensity autocorrelation function and hydrodynamic radius D_H (nm) of (A) LysBD, (B) ArgBD, (C) AspBD and (D) GluBD (1 mg/mL) at a scattering angle ϑ =90° and c=1 g/L in pH 5 acetic acid buffer (100 mM). The inset represents the hydrodynamic diameter (D_H) distribution obtained by applying the Contin method to the data.

Figures S6. Chemical structure of the monomer CA-HG and emission spectra of CA-HG (100 mM) upon the addition of 0-50 molar equivalents Cu(II).

Figure S7. MD Autodock in silico simulation of HisBD as trimer, showing equivalent carbazole-hexaethylene glycol moiety and the Cu(II)-binding site with the numbered heteroatoms involved. The calculated binding-distances are displayed in Angstrom (Å): The simulation calculated a distance of one Copper (II) ion to HisBD of 2.4478 (058) and 2.5676 (049) Å with a binding free energy of -0.6 kcal/mol.

Figure S8. Effect of EDTA-Na₂ on the relative fluorescence intensity (%) of HisBD. A variety of 3.125 μ M up to 100 μ M ETDA-Na₂ was added to a stable concentration of 100 μ M HisBD. Data represented as mean ± SD: (n=3)

References

(1) Liu, Y.; Stuart, M. C. A.; Buhler, E.; Lehn, J.-M.; Hirsch, A. K. H. Proteoid Dynamers with Tunable Properties. *Adv. Funct. Mater.* **2016**, *26* (34), 6297–6305.