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Figure S1. 1H NMR spectra of the used solvent 2-methyltetrahydrofuran (2mTHF).  



 

Figure S2. Illustration of the effect of post-curing: Tensile test of progressively more cross-linked MA5. 

After leaving the sample overnight at 75 ºC, the post-curing is complete. Post-curing deemed complete due 

to near-overlap with a reference sample from previous batch. 



 

 

Figure S3. FTIR spectra of a) MI5 and b) MA5 cross-linked networks, immediately upon cross-linking is 

finished and after 30 days.  
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Figure S4. Differential scanning calorimetry (DSC) results from the various materials tested. Tg and Tm 

annotated (where present), with their characteristic temperatures and calculated enthalpies.  a) A (stoich. 

eq.) cross-linked system with a vinyl terminated PDMS (5kDa) and 4-functional cross-linker with hydride 

groups. b) MA5 prepolymer. c) MA5 cross-linked network. d) MI5 prepolymer. e) MI5 cross-linked 

network. f) MA25 prepolymer. g) MA25 cross-linked network. h) MI25 prepolymer. i) MI25 cross-linked 

network.  
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Figure S5. The rheological loss factor of a) MI5, and b) MI25 and c) MA25, respectively, at different 

temperatures from 20 °C to 80 °C. 
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Figure S6. The storage modulus of all cross-linked samples at the investigated temperatures. 



Figure S7. Complex viscosity at room temperature for all the samples. 



 

Figure S8. The dielectric loss factor of the investigated cross-linked networks at room temperature. 



 

Figure S9. a) Dielectric permittivities in the investigated temperature range for MA25, b) dielectric 

permittivities in the investigated temperature range for MI25 
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Figure S10. Temperature dependence of the dielectric properties: a) Permittivity over a temperature range 

(-150 – 100) ºC and b) ε’’ at low temperatures. The plateu value of permittivity (< 120 ºC) can be taken as 

the glass transition indicator through the appearance of the so-called depolarization peak in the dielectric 

loss curve line [1]. 
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Figure S11. Contact angle measurements of all the cross-linked samples  

 



 

Figure S12. Electric breakdown strength of all the cross-linked samples.  

 



 

Figure S13. Tensile test of all the self-healed materials, following regular self-healing procedure (24 h at 

room temperature), varying the temperature and healing times (1h at 75 ºC) , and healing „after break“ (24h 

at room temperature, after a sample was broken by a tensile test) 

 

 



 

Figure S14. Optical microscopy at 400x magnification of MA5N with the imposed cut visible after self-

healing for 24 h under room temperature. The blue color is marker residue. 
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