Electronic Supplemental Information for:

Valorization of shoe sole waste into high-performance cationic dye sorbents via sulfonation

Mark Robertson^a, Andrew Barbour^a, Zhe Qiang^{a,*}

^aSchool of Polymer Science and Engineering, The University of Southern Mississippi,

Hattiesburg, Mississippi, 39406, USA

Corresponding author: Zhe Qiang (Email: zhe.qiang@usm.edu)

Figure S1. Gel fraction results for virgin EVA and both post-consumer waste foams in dichloromethane for 12 h.

Figure S2. Differential scanning calorimetry thermograms of virgin EVA and the postconsumer waste foams.

The virgin EVA exhibits a broad endothermic transition with a distinct peak at 51 °C. This broad transition is common in EVA copolymers with large vinyl acetate contents and has been reported in multiple works. The two post-consumer waste foams exhibit a more distinct melting transition at elevated temperatures of 75 °C and 79 °C, respectively. This increase in melting temperature compared to the virgin material is characteristic of EVA copolymers with reduced vinyl acetate content.

Figure S3. TGA thermograms performed in air of the post-consumer waste foams. To further confirm the presence of inorganics in the shoe wastes, TGA experiments were also conducted under air to completely decompose the organic components of the waste foams. The resulting residual masses after degradation above 800 °C are 10.2 wt% and 11.2 wt% for Brand 1 and Brand 2, respectively; the increased residual mass compared to the experiments performed under nitrogen are increased which is likely a result of oxidation of the inorganic components.

Figure S4. SEM micrographs of (A) virgin EVA pellet cross-section, virgin EVA particle after sulfonation at 150 °C for (B) 5 min and (C) 15 min. Post-consumer waste Brand 1 structure (D) prior to reaction and after (E) 5 min and (F) 15 min of the sulfonation process. Post-consumer waste Brand 2 structure (G) prior to reaction and after (H) 5 min and (I) 15 min of the sulfonation process.

Figure S5. Adsorption of crystal violet by sulfonated polymer sorbents derived from (A) virgin EVA, (B) Brand 1, and (C) Brand 2.

Figure S6. Quantity of (A) methylene blue and (B) crystal violet adsorbed as function of time normalized by the acid content of the sorbents.

Table S	1. Fitting	parameters	from	adsorption	experiments	to a	pseudo-second	order
kinetic n	nodel.							

	Methylene	Blue		Crystal Violet		
Material	Q _e mg/g	K	R ²	Q _e mg/g	K	R ²
		g/mg*min			g/mg*min	
Virgin EVA	94.4	0.0011	0.912	61.5	0.0023	0.874
Brand 1	110.6	0.0017	0.972	82.6	0.0019	0.957
Brand 2	105.3	0.0014	0.956	38.3	0.0060	0.961

Table S2. Fitting parameters for multiple materials in the literature to pseudo-second order adsorption kinetics for methylene blue.

		— (
k ₂	Q _e mg/g	Reference
g/mg*min		
0.00167	49.2	41
0.09429	50.25	40
0.03595	5.015	39
0.001595	120.5	38
0.01391	54.05	37
0.000425	23.91	36
0.0067	74.85	34
0.001	99.6	33
0.00098	295.85	32
0.002	166	31
0.00138	47.6	30
0.0078	10.657	29
0.0033	45.41	28
0.0096	20.8	27
0.0653	2.94	26
0.0169	3.3553	25

Table S3. Fitting parameters for multiple materials in the literature to pseudo-second order adsorption kinetics for crystal violet.

k ₂	Q _e mg/g	Reference
g/mg*min		
0.0102	9.59	53
0.00016	23.35	54
0.00035	27.62	55
0.00234	42.053	56
0.0107	2.28	57
0.004	10.309	58
0.0202	26.45	59
0.000086	121.95	60
0.005	24.31	61
0.007	18.501	62
0.0000684	27.62	63
0.0047	18.34	64

Table S4. Fitting parameters for Langmuir and Freundlich models for the adsorption of crystal violet

	Langmuir			Freundlich		
Material	Qe	k	X ²	k	n	X ²
Virgin EVA	183.0	0.0509	1255	62.8	5.59	2443
Brand 1	215.1	0.0323	986	35.5	3.23	258
Brand 2	296.9	0.0066	606	9.7	1.89	1509