Supplementary information

Assessing the properties of protein foams as an alternative absorbent core layer in disposable sanitary pads

Athanasios Latras^{1†}, Mercedes A. Bettelli^{1†}, Pamela F. M. Pereira², Amparo Jiménez-Quero², Mikael S. Hedenqvist¹, Antonio J. Capezza^{1*}

- Division of Polymeric Materials, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- Division of Industrial Biotechnology, Department of LIFE Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden

* Correspondence: ajcv@kth.se, Tel: +46 76230165

†First shared authorship. The first authors contributed equally to this manuscript.

Fig S2. Pore size distribution in the cross-section microstructure of WG Pad layers.

Fig S3. SEM image of the WG/Gl-SBC-120 sample surface after 30 min of saline swelling and subsequent lyophilization.

Fig S4. SEM images of WG-pad layers after 24 h swelling in saline solution and subsequent lyophilization.

Figure S5. FT-IR profiles of the (a) dry and (b) wet WG-pad layers and PUR layer, dried after FSC for 30 min in saline solution (0.9 wt% NaCl).

Video S1. Representative samples during the tear tests.