Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Reviving BVDT-TTF and EVT-TTF salts

Federica Solano,¹ Pascale Auban-Senzier,² Bolesław Barszcz³, Arkadiusz Frąckowiak³, Iwona Olejniczak³, Pere Alemany,⁴ Enric Canadell,^{*,5} Nicolas Zigon^{*,1}, Narcis Avarvari^{*,1}

¹ Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France. E-mail: <u>narcis.avarvari@univ-angers.fr</u>; <u>nicolas.zigon@univ-angers.fr</u>

² Université Paris-Saclay, CNRS, UMR 8502, Laboratoire de Physique des Solides, 91405 Orsay, France

³ Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

⁴ Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

⁵ Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain, and Royal Academy of Sciences and Arts of Barcelona, Chemistry Section, La Rambla 115, 08002 Barcelona, Spain. E-mail: <u>canadell@icmab.es</u>

SUMMARY

Table S1. Crystallographic data, details of data collection and structure refinement parameters.

Table S2. Stoichiometry and conductivity of BVDT-TTF, EVT-TTF and BEDT-TTF salts.

Figure S1. Temperature dependent resistivity measurement on single crystal for (BVDT-TTF)_{2.5}(I₃).

Figure S2. Temperature dependent resistivity measurement on single crystal for (BVDT-TTF)₂(ReO₄).

Figure S3. Temperature dependent resistivity measurement on single crystal for (EVT-TTF)(ClO₄).

Figure S4. Raman spectrum of $(BVDT-TTF)_{2.5}(I_3)$ measured at room temperature with the 632.8 nm excitation line, in the frequency range of the polyiodide stretching vibrations.

Figure S5. ¹H NMR (300 MHz, CDCl₃) of compound **3**.

Figure S6. ³C NMR (76 MHz, CDCl₃) of compound 3.

Figure S7. ¹H NMR (300 MHz, CDCl₃) of compound **4**.

Figure S8. ³C NMR (76 MHz, CDCl₃) of compound 4.

Figure S9. ¹H NMR (300 MHz, CDCl₃) of compound BVDT-TTF.

Figure S10. ¹H NMR (300 MHz, CDCl₃) of compound EVT-TTF.

Figure S11. ¹³C NMR (126 MHz, DMSO-d₆) of compound EVT-TTF.

Figure S12. MS (MALDI-TOF) of compound BVDT-TTF.

Figure S13. MS (MALDI-TOF) of compound 4.

Figure S14. MS (MALDI-TOF) of compound EVT-TTF.

Figure S15. MS (MALDI-TOF) of compound 3.

	(BVDT-TTF)(TaF ₆)	(BVDT-TTF) _{2.5} (I ₃)	(BVDT-TTF)2(ReO4)	(EVT-TTF)(ClO4)
Formula sum	C ₁₀ H ₄ S ₈ , TaF ₆	C ₁₀ H4S ₈ , I _{1.2}	C ₁₀ H ₄ S ₈ , (ClO ₄) _{0.5}	C ₁₀ H ₆ S ₈ , (CH ₂ Cl ₂) _{0.5} , ClO ₄
Formula weight	675.56	532.89	505.71	524.54
Crystal system	orthorhombic	orthorhombic	monoclinic	monoclinic
Space group	Pnnm	<i>P</i> nma	<i>C</i> 2/m	P21/c
a/Å	4.8259(3)	3.777(19)	33.133(3)	8.0005(4)
b/Å	17.8935(9)	12.18(14)	12.1739(14)	23.8718(10)
c/Å	10.1805(5)	33.1(9)	3.8263(6)	9.8100(5)
α/°	90	90	90	90
β/°	90	90	93.360(11)	100.649(5)
γ/°	90	90	90	90
V/Å ³	879.11(8)	1523(46)	1540.7(3)	1841.31(16)
Z	2	4	4	4
D _c /g cm ⁻³	2.552	2.324	2.180	1.892
т/к	200	200	200	297
µ/mm ⁻¹	20.964	29.814	18.139	11.819
Reflections collected	883	1518	1714	6003
Independent reflection	826	1207	1035	2614
final R_1^a , wR_2^b [$l > 2\sigma(l)$]	0.0393/0.1129	0.0795/0.2430	0.1192/0.3454	0.0570/0.1564
R_1^a, wR_2^b (all data)	0.0408/0.1141	0.0943/0.2540	0.1249/0.3489	0.0646/0.1653
goodness-of-fit on F ²	1.099	1.131	1.097	1.055
$\Delta ho_{ extsf{min}}/\Delta ho_{ extsf{max}}$ (e Å-3)	-1.305/2.169	-0.755/1.261	-0.971/1.102	-0.938/0.984
Completeness (%)	99.2	98.4	81.0	94.1
CCDC number	2296888-	2296889-	2296890-	2296891-

Table S1 Crystallographic data, details of data collection and structure refinement parameters.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}| / \sum |F_{o}|. {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}; w = 1 / [\sigma^{2}(F_{o}^{2}) + (\alpha P)^{2} + bP] where P = [max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3.$

Fig. S1 Temperature dependent resistivity measurement on single crystal for (BVDT-TTF)_{2.5}(I₃).

Fig. S2 Temperature dependent resistivity measurement on single crystal for (BVDT-TTF)₂(ReO₄).

Fig. S3 Temperature dependent resistivity measurement on single crystal for (EVT-TTF)(ClO₄).

Fig. S4 Raman spectrum of $(BVDT-TTF)_{2.5}(I_3)$ measured at room temperature with the 632.8 nm excitation line, in the frequency range of the polyiodide stretching vibrations.

The Raman spectrum of $(BVDT-TTF)_{2.5}(I_3)$ in the frequency range of the stretching polyiodide modes reveals three distinct modes:

- the symmetric stretching of the centrosymmetric triiodide anion at 112 cm⁻¹,

- the asymmetric stretching mode of the asymmetric triiodide ion at 143 cm⁻¹,

- the band at 164 cm⁻¹, which is most likely related to the symmetric stretching of the L-shaped pentaiodide present in the structure.^{1,2}

Donor	Anion	Stoichiometry	Single crystal conductivity (S·cm ⁻¹ , 290K)
BVDT-TTF	TaF ₆	1:1	4.4·10 ⁻²
BVDT-TTF	l ₃	2.5 : 1	1.4·10 ⁻¹
BVDT-TTF	ReO ₄	2:1	3.1·10 ⁻³
EVT-TTF	CIO4	1:1	1.8.10 ⁻²
BEDT-TTF ³	TaF ₆	1:1	5.10-4
β-BEDT-TTF⁴	l ₃	2:1	20
BEDT-TTF⁵	ReO ₄	2:1	5·10 ⁻³
BEDT-TTF ⁶	CIO ₄	2:1	26.31

Table S2 Stoichiometry and conductivity of BVDT-TTF, EVT-TTF and BEDT-TTF salts.

Fig. S5 ¹H NMR (300 MHz, CDCl₃) of compound 3.

Fig. S6 ¹³C NMR (76 MHz, CDCl₃) of compound 3.

Fig. S7 1 H NMR (300 MHz, CDCl₃) of compound 4.

Fig. S8 13 C NMR (76 MHz, CDCl₃) of compound 4.

Fig. S9 ¹H NMR (300 MHz, CDCl₃) of BVDT-TTF.

Fig. S10 ¹H NMR (300 MHz, CDCl₃) of EVT-TTF.

Fig. S11 ¹³C NMR (126 MHz, DMSO-d₆) of EVT-TTF.

Mass spectrum:

Results:

 #
 Formula
 Mass
 DBE
 Abs. Error (u)
 Error (u)
 Error (ppm)

 1
 C10 H4 S8
 379.80732
 9.0
 0.00006
 0.00006
 0.16

Fig. S12 MS (MALDI-TOF) of BVDT-TTF.

Fig. S13 MS (MALDI-TOF) of compound 4.

Fig. S14 MS (MALDI-TOF) of EVT-TTF.

Fig. S15 MS (MALDI-TOF) of compound 3.

References

1 P. H. Svensson and L. Kloo, Chem. Rev., 2003, 103, 1649–1684.

- 2 I. Jerman, V. Jovanovski, A. Šurca Vuk, S. B. Hočevar, M. Gaberšček, A. Jesih and B. Orel, *Electrochim Acta*, 2008, **53**, 2281–2288.
- 3 M. Allain, C. Mézière, P. Auban-Senzier and N. Avarvari, Crystals, 2021, 11, 386.
- 4 L. I. Buravov, M. V. Kartsovnik, V. F. Kaminskii, P. A. Kononovich, E. E. Kostuchenko, V. N. Laukhin, M. K. Makova, S. I. Pesotskii, V. N. Topnikov and E. B. Yagubskii, .
- 5 S. S. P. Parkin, E. M. Engler, R. R. Schumaker, R. Lagier, V. Y. Lee, J. C. Scott and R. L. Greene, *Phys. Rev. Lett.*, 1983, **50**, 270–273.
- 6 G. Saito, T. Enoki, K. Toriumi and H. Inokuchi, Solid State Commun., 1982, 42, 557–560.