Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary material

Projected-based 3D printing of multichannel poly(caprolac-tone) methacrylate nerve guidance conduit for peripheral nerve regeneration

Haibing Li^{#1}, Ke Yao^{#2}, Yuewei Chen², Wensong Ye¹, Qiang Shu^{*1}

 (¹Department of Paediatric Orthopaedics, The Children's Hospital, Zhejiang University School of Medicine, National clinical research center for child health, Hangzhou 310052, China
²State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
* Correspondence to: Qiang Shu, shuqiang@zju.edu.cn
These authors contributed equally to the work)

Supplementary figures

Fig. S1 In vivo implantation process of NGCs. (A) The expose of sciatic nerve via incision. (B) NGCs implantation into the sciatic nerve of Sprague Dawley rats.

Fig. S2. Inner diameter of the 1-channel NGC measured under optical microscopy(R=750.957µm)

Fig. S3. Inner diameter of the 4-channel NGC measured under optical microscopy($R=250.457\mu m$)

Fig. S4. Inner diameter of the 7-channel NGC measured under optical microscopy(R=200.010µm)

Fig. S5. RSC 96 cell adhesion and proliferation on the 1-, 4-, and 7-channel PCLMA NGCs after culturing for 3 d

Fig. S6.