Supporting Information

Versatile synthesis of sub 10 nm sized metal-doped M_xCo_{3-x}O₄ nanoparticles and their electrocatalytic OER activity

Carsten Placke-Yan,^a Georg Bendt,^a Soma Salamon (ORCID 0000-0002-8661-6038),^b Joachim Landers (ORCID 0000-0002-4506-6383),^b Heiko Wende (ORCID ID: 0000-0001-8395-3541),^b Ulrich Hagemann,^c and Stephan Schulz^{*a,c} (ORCID ID: 0000-0003-2896-4488)

^a Institute for Inorganic Chemistry, Universitätsstraße 5-7, D-45141 Essen, Germany. E-mail: Stephan.schulz@uni-due.de

^b Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg, Germany

^c Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany

Content

I. Sample Preparation and Characterization

Table S1. Overview of Sample Characterization (TEM and and electrocatalytic activity parameters)

 Table S2. Weights for the different doped and undoped nanoparticle samples.

II. PXRD characterization

Figure S1. PXRD measurements of S:Al005, S:Al01, S:Al02, S:O and S:Oc.

Figure S2. PXRD measurements of doped nanoparticles.

III. XPS measurements

Figure S3. XPS measurements of S:0 (a) and S:0c (b). Inset: Magnification of Co 2p.

IV. FT-IR spectroscopy

Figure S4. FT-IR measurements of uncalcinated samples S:0, S:Al005, S:Al01 and S:Al02 compared to oleylamine.

Figure S5. FT-IR measurements of calcinated nanoparticles S:0c, S:Al005c, S:Al01c and S:Al02c.

V. TEM Characterization

Figure S6-S12. TEM image and particle size distribution of metal-doped Co₃O₄ nanoparticles.

VI. EDX Characterization

Table S3. Metal concentration within the $M_{0.05}Co_{2.95}O_4$, $M_{0.1}Co_{2.9}O_4$ and $M_{0.2}Co_{2.8}O_4$ (M = Al, V, Cr, Mn, Fe, Ni) nanoparticle series determined by SEM-EDX bulk measurements.

Figure S13-18. TEM-EDX Mapping of the M-doped nanoparticle sample M02.

VII. Mössbauer spectroscopy

Figure S19. Mössbauer spectra of Fe-doped nanoparticles recorded between 5 and 300 K.

VIII. Electrochemical Characterization

Figure S20. Electrochemical characterization of doped nanoparticles in comparison with pristine Co₃O₄ consisting of LSV measurements, Tafel slope and EIS measurements.

IX. References

I. Sample Preparation and Characterization

Sample	Stoichiometry	Size (TEM) [nm]	Overpotential [mV]	Tafel slope [mV dec ⁻¹]
S:0c	C03O4	8.9 ± 2.4	471 ± 7	52.3
S:Al005c	Al _{0.05} Co _{2.95} O ₄	8.3 ± 1.9	483 ± 1	57.8
S:Al01c	Al _{0.1} Co _{2.9} O ₄	8.9 ± 1.9	492 ± 1	59.8
S:Al02c	Al _{0.2} Co _{2.8} O ₄	9.1 ± 2.6	502 ± 6	59.9
S:V005c	V _{0.05} Co _{2.95} O ₄	9.3 ± 2.3	464 ± 4	51.7
S:V01c	V _{0.1} Co _{2.9} O ₄	8.6 ± 1.9	453 ± 3	50.7
S:V02c	V _{0.2} Co _{2.8} O ₄	8.1 ± 2.2	441 ± 3	52.8
S:Cr005c	Cr _{0.05} Co _{2.95} O ₄	7.9 ± 1.9	464 ± 4	54.1
S:Cr01c	Cr _{0.1} Co _{2.9} O ₄	9.2 ± 2.2	457 ± 3	52.6
S:Cr02c	Cr _{0.2} Co _{2.8} O ₄	9.1 ± 2.4	438 ± 5	49.2
S:Mn005c	Mn _{0.05} Co _{2.95} O ₄	8.0 ± 2.0	472 ± 4	43.1
S:Mn01c	Mn _{0.1} Co _{2.9} O ₄	7.5 ± 2.0	485 ± 5	50.1
S:Mn02c	Mn _{0.2} Co _{2.8} O ₄	8.2 ± 2.7	490 ± 10	53.6
S:Fe005c	Fe0.05C02.95O4	7.3 ± 2.4	474 ± 9	50.3
S:Fe01c	Fe _{0.1} Co _{2.9} O ₄	7.7 ± 2.2	460 ± 6	54.0
S:Fe02c	Fe _{0.2} Co _{2.8} O ₄	8.0 ± 2.9	445 ± 11	49.6
S:Ni005c	Ni0.05C02.95O4	9.0 ± 1.7	476 ± 7	50.5
S:Ni01c	Ni _{0.1} Co _{2.9} O ₄	8.6 ± 2.8	469 ± 3	49.0
S:Ni02c	Ni _{0.2} Co _{2.8} O ₄	9.6 ± 2.9	461 ± 6	46.4

Table S1. Overview of Sample Characterization (TEM size and electrocatalytic activity parameters)

Table S2. Amounts for the different doped and undoped nanoparticle samples.

Sample	Stoichiometry	n(Co(acac) ₂)	m(Co(acac) ₂)	Dopant-Source	n(Dopant)	m(Dopant)
					[mmoi]	lmgi
S:0c	C03O4	7.500	1.928	-	-	-
S:Al005c	Al _{0.05} Co _{2.95} O ₄	7.375	1.896	Al(acac)₃	0.125	40.5
S:Al01c	Al _{0.1} Co _{2.9} O ₄	7.250	1.860	Al(acac)₃	0.250	81.1
S:Al02c	Al _{0.2} Co _{2.8} O ₄	7.000	1.800	Al(acac)₃	0.500	162.2
S:V005c	V0.05C02.95O4	7.375	1.896	V(acac)₃	0.125	43.5
S:V01c	V _{0.1} Co _{2.9} O ₄	7.250	1.860	V(acac)₃	0.250	87.1
S:V02c	V _{0.2} Co _{2.8} O ₄	7.000	1.800	V(acac)₃	0.500	174.1
S:Cr005c	Cr _{0.05} Co _{2.95} O ₄	7.375	1.896	$Cr(NO_3)_3 \cdot 9H_2O$	0.125	50.0
S:Cr01c	Cr _{0.1} Co _{2.9} O ₄	7.250	1.860	Cr(NO ₃) ₃ · 9H ₂ O	0.250	100.1
S:Cr02c	Cr _{0.2} Co _{2.8} O ₄	7.000	1.800	$Cr(NO_3)_3 \cdot 9H_2O$	0.500	200.1
S:Mn005c	Mn _{0.05} Co _{2.95} O ₄	7.375	1.896	Mn(acac) ₂	0.125	31.6
S:Mn01c	Mn _{0.1} Co _{2.9} O ₄	7.250	1.860	Mn(acac) ₂	0.250	63.3
S:Mn02c	Mn _{0.2} Co _{2.8} O ₄	7.000	1.800	Mn(acac) ₂	0.500	126.6
S:Fe005c	Fe0.05C02.95O4	7.375	1.896	Fe(acac)₃	0.125	44.1
S:Fe01c	Fe _{0.1} Co _{2.9} O ₄	7.250	1.860	Fe(acac)₃	0.250	88.3
S:Fe02c	Fe _{0.2} Co _{2.8} O ₄	7.000	1.800	Fe(acac)₃	0.500	176.6
S:Ni005c	Ni0.05C02.95O4	7.375	1.896	Ni(acac) ₂	0.125	32.1
S:Ni01c	Ni _{0.1} Co _{2.9} O ₄	7.250	1.860	Ni(acac) ₂	0.250	64.2
S:Ni02c	Ni _{0.2} Co _{2.8} O ₄	7.000	1.800	Ni(acac) ₂	0.500	128.5

II. PXRD characterization

Figure S1. PXRD measurements of S:Al005, S:Al01, S:Al02, S:O and SOc. Reference diffractograms for CoO (PDF 01-074-2391, blue) and Co_3O_4 (PDF 01-076-1802, black).

Figure S2. PXRD measurements of doped nanoparticles. Reference diffractogram for Co₃O₄ (PDF 01-076-1802).

III. XPS measurements

Figure S3. XPS measurements of S:0 (a) and S:0c (b). Inset: High resolution Co 2p spectra.

IV. FT-IR spectroscopy

Figure S4. FT-IR measurements of uncalcinated samples S:0, S:Al005, S:Al01 and S:Al02 compared to oleylamine spectrum.

Figure S5. FT-IR measurements of calcinated nanoparticles S:0c, S:Al005c, S:Al01c and S:Al02c.

V. TEM Characterization

Figure S6. TEM image and particle size distribution of Co₃O₄ nanoparticles S:0c.

Figure S7. TEM images and particle size distribution of Al-doped Co₃O₄ nanoparticles.

Figure S8. TEM images and particle size distribution of V-doped Co₃O₄ nanoparticles.

Figure S9. TEM images and particle size distribution of Cr-doped Co_3O_4 nanoparticles.

Figure S10. TEM images and particle size distribution of Mn-doped Co₃O₄ nanoparticles.

Figure S11. TEM images and particle size distribution of Fe-doped Co₃O₄ nanoparticles.

Figure S12. TEM images and particle size distribution of Ni-doped Co_3O_4 nanoparticles.

VI. EDX Characterization

	x = 0.05 [at%]	x = 0.1 [at%]	x = 0.2 [at%]
theoretical values	1.7	3.3	6.7
	S:Al005c	S:Al01c	S:Al02c
Al _x CO _{3-x} O ₄	1.7	3.2	6.5
	S:V005c	S:V01c	S:V02c
V _x CO _{3-x} O ₄	1.8	3.3	6.7
	S:Cr005c	S:Cr01c	S:Cr02c
$CI_{x}CO_{3-x}O_{4}$	1.8	3.8	7.3
Ma Ca O	S:Mn005c	S:Mn01c	S:Mn02c
IVINxCO3-xO4	1.3	3.6	7.0
	S:Fe005c	S:Fe01c	S:Fe02c
Fe _x CO _{3-x} O ₄	1.5	2.3	5.5
	S:Ni005c	S:Ni01c	S:Ni02c
$M_x C O_{3-x} O_4$	2.2	3.2	6.9

Table S3. Metal concentration within the $M_{0.05}Co_{2.95}O_4$, $M_{0.1}Co_{2.9}O_4$ and $M_{0.2}Co_{2.8}O_4$ (M = Al, V, Cr, Mn, Fe, Ni) nanoparticle series determined by SEM-EDX bulk measurements.

Sample S:Al02c

Figure S13. TEM-EDX Mapping of the Al-doped nanoparticle sample S:Al02c.

Sample S:V02c

Figure S14. TEM-EDX Mapping of the V-doped nanoparticle sample S:V02c.

Sample S:Cr02c

Figure S15. TEM-EDX Mapping of the Cr-doped nanoparticle sample S:Cr02c.

Sample S:Mn02c

Figure S16. TEM-EDX Mapping of the Mn-doped nanoparticle sample S:Mn02c.

Sample S:Fe02c

Figure S17. TEM-EDX Mapping of the Fe-doped nanoparticle sample S:Fe02c.

Figure S18. TEM-EDX Mapping of the Ni-doped nanoparticle sample S:Ni02c.

VII. Mössbauer spectroscopy

Mössbauer spectra were recorded on the Fe-containing samples (S:Fe005c, S:Fe01c, S:Fe02c) in order to discern the valency of the Fe-ions, as well as to characterize their overall electronic and magnetic state. The focus was on sample S:Fe02c since its higher Fe-content provided the highest signal intensity from the three samples that were characterized. The room temperature (300 K) spectrum revealed a doublet structure, indicating that the sample is in a paramagnetic state. After evaluation via a fitting routine (Figure S20a) we were able to determine an isomer shift δ of ca. 0.31 mm/s relative to α -Fe at room temperature, and a quadrupole splitting ΔE_{α} of ca. 0.58 mm/s, indicating a high-spin Fe³⁺ state¹ with no Fe²⁺ being discernible within the detection limit, which usually exhibits far higher values of δ and ΔE_{α} . A very slight asymmetry of the two lines could indicate a miniscule additional spectral contribution, which could not be resolved due to the overall low intensity.

At 5 K, the spectrum displays a magnetically ordered sextet state, which is to be expected due to the antiferromagnetic ordering in pure Co_3O_4 up to the Néel temperature $T_{N\acute{e}el}$ of ca. 30 K.^{2,3} Here, a non-Lorentzian line shape (reproduced by a narrow hyperfine field distribution) could indicate the presence of two subspectra in superposition, likely due to the distribution of Fe³⁺ on tetrahedral A-sites as well as octahedral B-sites. A broad sextet distribution is still present as a minor spectral component up to 80 K, indicating a slightly enhanced Néel temperature in S:Fe02c, matching trends in $T_{N\acute{e}el}$ for Fe_xCo_{3-x}O₄ observed before.³

Due to the difficulties associated with the lower Fe content of samples S:Fe01c and S:Fe005c, only one spectrum was recorded at 80 K for each sample, to mitigate additional loss in spectral area by thermal excitation of phonons evident at higher temperatures. For these two, a pure paramagnetic doublet state is observed, consistent with lower values of $T_{N\acute{e}l}$ closer to 30 K.

Figure S19. Mössbauer spectra of Fe-doped nanoparticles recorded between 5 and 300 K.

VIII. Electrochemical Characterization

Figure S20. Electrochemical characterization of doped nanoparticles in comparison with pristine Co_3O_4 using LSV measurements, Tafel slope and EIS measurements.

IX. References

- 1 C. Gallenkamp, U. I. Kramm, J. Proppe and V. Krewald, *Int. J. Quantum Chem.*, 2021, 121:e26394.
- 2 Y. Ichiyanagi, Y. Kimishima and S. Yamada, J. Magn. Magn. Mater., 2004, 272–276, e1245.
- 3 M. Takahashi and M. E. Fine, J. Appl. Phys., 1972, **43**, 4205.