Supplementary information

Inkjet-printed Ce-doped SnO_x electron transport layer for improved performance of planar perovskite solar cells

Dongli Lu¹, Mahboubeh Jamshidi², Chaochao Dun³, Jeffrey J. Urban³, James M. Gardner², and Liubov Belova¹, *

¹Department of Materials Science and Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden. E-mail: lyuba@kth.se

²Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.

³The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.

Figure S1. (a-c) Top-view SEM images of inkjet-printed Ce-doped SnO_x thin films at various doping levels. (d) Bare FTO is shown as a reference. Note that the larger 100 nm-scale structures are the large grains of the FTO substrate under the SnO_x films.

Figure S2. XRD spectra of inkjet-printed Ce-doped SnO_x thin films at various Ce doping levels.

Figure S3. Absorptance of SnO_x and 2.5 at% Ce-SnO_x thin films on glass substrates.

Figure S4. Conductivity of pristine SnO_x and Ce-doped SnO_x thin films with various Ce doping contents.

Figure S5. PL spectra of the perovskite films deposited on pristine SnO_x and Ce-doped SnO_x.

Figure S6. Distribution of photovoltaic parameters of PSCs based on inkjet-printed pristine SnO_x and Ce-doped SnO_x at various doping concentrations.

Figure S7. The device architecture for measuring the condcutivity of ETLs.

The electrical conductivity of ETLs was measured using a two-probe method [1]. As shown in **Figure S7**, the conductivity (σ) is determined using the equation:

$$\sigma = \frac{J}{E} = \frac{W}{R \times D \times L}$$
$$J = \frac{I}{D \times L}, E = \frac{V}{W}$$

where R is the resistance calculated from a current-voltage (I-V) curve using linear voltage sweeps, D is the thickness of the ETL, W and L are the channel width and length of 2 mm and 10 mm, respectively. The eventual estimated conductivity was an average value based on data obtained from two devices.

Table S1. Peak deconvolution of the O 1s XPS spectra of pristine SnO_x and 2.5 at% Ce-doped SnO_x .

Sample	Peak type	Peak position (eV)	Percentage (%)
SnO	O_L	531.15	75.89
ShO _x	O_{V}	532.58	24.11
2.5 at% Ce-SnO _x	O_L	530.98	80.60
	O_V	532.43	19.40

Table S2. TRPL parameters of perovskite films deposited on pristine SnO_x and 2.5 at% Cedoped SnO_x .

Sample	A_1	τ_1 (ns)	A_2	τ_2 (ns)	$\tau_{ave} \left(ns \right)$
SnO _x	0.46	10	0.54	188	106
2.5 at% Ce-SnO _x	0.49	9	0.51	236	125

Ce content	Scan direction	PCE (%)	$V_{OC}(V)$	J _{SC} (mA/cm ²)	FF (%)
pristine _	reverse	13.87 ± 0.40	1.05 ± 0.02	21.06 ± 0.28	62.7 ± 1.3
	leverse	(14.66)	(1.08)	(20.96)	(65.0)
	forward	12.58 ± 0.30	1.02 ± 0.02	21.01 ± 0.20	58.9 ± 1.6
		(12.97)	(1.03)	(20.90)	(60.6)
2.5 at% _	reverse	15.05 ± 0.58	1.07 ± 0.01	21.65 ± 0.29	64.9 ± 1.8
		(15.77)	(1.08)	(21.98)	(66.4)
	forward	13.21 ± 0.78	1.03 ± 0.01	21.60 ± 0.26	59.3 ± 2.6
		(12.97)	(1.03)	(21.96)	(57.6)
5 at% _		12.61 ± 1.66	1.06 ± 0.03	21.78 ± 0.39	54.5 ± 5.4
	reverse	(14.78)	(1.10)	(21.89)	(61.7)
	forward	10.52 ± 2.22	0.99 ± 0.09	21.73 ± 0.38	48.2 ± 6.7
		(11.23)	(1.05)	(21.76)	(49.1)
7.5 at% _	reverse	12.50 ± 1.66	1.08 ± 0.02	21.11 ± 1.20	55.0 ± 6.4
		(14.20)	(1.05)	(21.59)	(62.6)
	forward	8.85 ± 3.16	1.05 ± 0.02	22.09 ± 0.80	38.5 ± 14.4
		(11.89)	(1.02)	(21.76)	(53.6)
10 at% -	reverse	12.13 ± 1.00	1.08 ± 0.02	20.14 ± 0.83	55.7 ± 2.9
		(12.78)	(1.08)	(20.12)	(59.1)
	forward	6.57 ± 1.72	1.06 ± 0.01	20.63 ± 0.24	30.0 ± 7.6
		(7.75)	(1.06)	(20.48)	(35.7)

Table S3. Average (champion) photovoltaic parameters of the devices based on inkjet-printedpristine SnO_x ETLs and Ce-doped SnO_x ETLs at various doping levels.

References

Chen, C.; Zhang, W.; Cong, J.; Cheng, M.; Zhang, B.; Chen, H.; Liu, P.; Li, R.; Safdari, M.; Kloo, L.; Sun, L., Cu(II) Complexes as p-Type Dopants in Efficient Perovskite Solar Cells. ACS Energy Lett. 2017, 2 (2), 497-503.