Electronic supplementary information

Conductive MXene nanosheets infused in curli fibers for bioprinting and thin film electrodes

Mario Alfonso Arenas García^a, Slah Hidouri^a, Joshua M. Little^b, Daniel Modafferi^a, Xinxin Hao^a, Po-Yen Chen^b & Noémie-Manuelle Dorval Courchesne^a

^aDepartment of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC, H3A 0C5, Canada

^bDepartment of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Drive, College Park, MD, 20742, United States

Figure S1. Characterization of curli-MXene nanocomposites (CMXn) for MXene integrated at different stages of the curli fiber isolation process via vacuum filtration (pre-gelation, during gelation and post-gelation). (a) X-ray diffraction (XRD), (b) Fourier-transform infrared (FTIR) spectroscopy and (c) thermogravimetric analysis (TGA).

Figure S2. G'/G" ratios for frequency sweeps for curli fibers and CMXn with different loadings.

Figure S3. Stress-strain curves for CMXn thin films with different MXene loading: a) CMXn-25, b) CMXn-55, c) CMXn-64 and d) CMXn-70. Three replicates are presented for each loading.

Label	Composite (name)	Maximum ε (%)	Maximum conductivity (S/cm)	Reference
This work	CMXn	83.81	49.34	This work
i	MXene-bacterial cellulose	16	1000	1
ii a	Hydrogen-bonded MXene- carboxymethyl cellulose film (HBM)	6.41	7644	2
ii b	Covalently bridged MXene- boron film (CBM)	2.13	9746	2
ii c	Sequentially bridged MXene- carboxymethyl cellulose-boron film (SBM)	5.26	6484	2
ii d	Sequentially bridged MXene- carboxymethyl cellulose-boron doctor bladed film (SBM-DB)	4.62	5976	2
iii	MXene-MMT-PVA	2	1.25	3
iv	MXene-chitosan	8.5	9.69	4
v	MXene	2	12300	5
vi	MXene-polyurethane	1857	0.01	6
vii a	MXene-polyurethane, coagulating bath with isopropanol (IPA)	6.41	22.6	7
vii b	MXene-polyurethane, coagulating bath with acetic acid (AcOH)	6.41	392	7
viii	MXene, coagulation solution with NH₄ ions	0.22	7713	8

Table S1. Nomenclature for MXene composites with their corresponding ultimate strain and conductivity values.

Assembly technique	Composition	MXene loading (wt. %)	Mechanical properties	Conductivity (S/cm)	Application	Reference
Vacuum assisted filtration (VAF)	MXene-curli fibers	<u>CMXn-25</u> 25.12 ± 2.40	<u>CMXn-25</u> Young's Modulus: 4.28 ± 1.06 MPa Stress: 0.86 ± 0.18 MPa Strain: 83.81 ± 21.60 %	<u>CMXn-25</u> 4.41 ± 1.21 x 10 ⁻⁸	Strain sensor, electromagnetic interference (EMI) shielding	This work
		<u>CMXn-55</u> 54.94 ± 7.43	<u>CMXn-55</u> Young's Modulus: 101.17 ± 41.95 MPa Stress: 7.97 ± 2.26 MPa Strain: 20.03 ± 3.92 %	<u>CMXn-55</u> 34.98 ± 1.92 x 10 ⁻³		
		<u>CMXn-64</u> 63.72 ± 9.88	<u>CMXn-64</u> Young's Modulus: 39.67 ± 19.52 MPa Stress: 3.25 ± 1.13 MPa Strain: 18.75 ± 7.09 %	<u>CMXn-64</u> 21.51 ± 12.22		
		<u>CMXn-70</u> 69.67 ± 5.31	<u>CMXn-70</u> Young's Modulus: 109.84 ± 56.69 MPa Stress: 4.19 ± 2.22 MPa Strain: 7.12 ± 1.98 %	<u>CMXn-70</u> 49.34 ± 28.27		
	MXene-bacterial cellulose	43 – 83	Stress: 40 – 70 MPa Strain: 6 – 16 %	250 - ~1000	Micro- supercapacitor arrays	1
	Hydrogen-bonded MXene- carboxymethyl cellulose film (HBM)	<u>HBM</u> 81.5 – 95.7	<u>HBM</u> Young's Modulus: 7.0 ± 0.1 – 12.9 ± 1.3 GPa Tensile strength: 178 ± 7 – 310 ± 11 MPa Strain: 3.62 ± 0.12 – 6.41 ± 0.17 %	<u>HBM</u> 1028 ± 29 – 7644 ± 82	EMI shielding	
	Covalently bridged MXene- boron film (CBM)	<u>CBM</u> 98.68 – 99.72	<u>CBM</u> Young's Modulus: 9.8 ± 0.8 – 25.0 ± 1.0 GPa Tensile strength: 143 ± 5 – 263 ± 8 MPa Strain: 1.34 ± 0.07 – 2.13 ± 0.11 %	<u>CBM</u> 9375 ± 113 – 9746 ± 128		2
	Sequentially bridged MXene- carboxymethyl cellulose-boron film (SBM)	<u>SBM</u> 89.93 – 90.57	<u>SBM</u> Young's Modulus: 14.2 ± 0.8 – 29.4 ± 2.5 GPa Tensile strength: 432 ± 17 – 583 ± 16 MPa Strain: 3.71 ± 0.06 – 5.26 ± 0.27 %	<u>SBM</u> 5850 ± 54 – 6484 ± 59		

Tab	le S2.	Comparison	of mec	hanical	and	cond	luctive	properties	of	MXene	composites	in literature	· .
								p. op c co	•••				•

Table S2. (continued)

Assembly technique	Composition	MXene loading (wt. %)	Mechanical properties	Conductivity (S/cm)	Application	Reference
VAF	MXene-graphdiyne nanotube	_	Can achieve bending angles up to 90°	1667	Supercapacitors	9
Layer by layer	MXene-MMT-PVA	45.5	Young's Modulus: 10.5 ± 6.6 GPa Tensile strength: 225 ± 25 MPa Strain: 2 %	0.53 to 1.25	EMI shielding	3
	MXene-chitosan	9.1 – 25.9	Stress: ~12 – 25 MPa Strain: ~4.5 – ~8.5 %	0.14-9.69	EMI shielding & thermal management capacity	4
Doctor blading	MXene	100	Young's Modulus: 10.5 ± 6.6 GPa Tensile strength: 225 ± 25 MPa Strain: 2 %	10,220 ± 480 – 12,300 ± 170	Photodetectors	5
	Sequentially bridged MXene- carboxymethyl cellulose-boron film (SBM- DB)	90.23	Young's Modulus: 26.8 ± 1.3 GPa Tensile strength: 559 ± 10 MPa Strain: 4.62 ± 0.21 %	5976 ± 68	EMI shielding	2
Hot press	MXene-polyurethane	0.0 - 1.0	Tensile strength: 17.3 – 20.6 MPa Strain: 1700 – 1857 %	-	Coating, adhesives, etc.	6
Wet-spinning	MXene-polyurethane, coagulating bath with isopropanol (IPA) & acetic acid (AcOH)	0.50, 0.99, 1.96, 4.76, 9.09, 13.04, 16.67, 23.08, 28.57, 44.44, 61.54, 80.00 & 100.00	<u>IPA bath</u> Young's Modulus: 7.0 ± 0.1 – 12.9 ± 1.3 GPa Tensile strength: 178 ± 7 – 310 ± 11 MPa Strain: 3.62 ± 0.12 – 6.41 ± 0.17 %	<u>IPA bath</u> ~5.0 x 10 ⁻⁵ – 22.6	Textile strain sensors	
			<u>AcOH bath</u> Young's Modulus: 7.0 ± 0.1 – 12.9 ± 1.3 GPa Tensile strength: 178 ± 7 – 310 ± 11 MPa Strain: 3.62 ± 0.12 – 6.41 ± 0.17 %	<u>AcOH bath</u> ~4.0 x 10 ⁻³ – 392		7
	MXene, coagulation solution with NH ₄ ions	100	Young's Modulus: 29.6 ± 5.1 GPa Tensile strength: 63.9 ± 13.1MPa Strain: 0.22 ± 0.05 %	7713 ± 110	Electrical wires	8
Rolling mill	MXene	100	_	1500	_	10

References

1. Jiao S, Zhou A, Wu M, Hu H. Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All-Solid-State Stretchable Micro-Supercapacitor Arrays. Advanced Science. 2019;6(12):1900529.

2. Wan S, Li X, Chen Y, Liu N, Du Y, Dou S, et al. High-strength scalable MXene films through bridging-induced densification. Science. 2021;374(6563):96-9.

3. Lipton J, Weng G-M, Alhabeb M, Maleski K, Antonio F, Kong J, et al. Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale. 2019;11(42):20295-300.

4. Tan Z, Zhao H, Sun F, Ran L, Yi L, Zhao L, et al. Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity. Composites Part A: Applied Science and Manufacturing. 2022;155:106809.

5. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Advanced Materials. 2020;32(23):2001093.

6. Sheng X, Zhao Y, Zhang L, Lu X. Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Composites Science and Technology. 2019;181:107710.

7. Seyedin S, Uzun S, Levitt A, Anasori B, Dion G, Gogotsi Y, et al. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials. 2020;30(12):1910504.

8. Eom W, Shin H, Ambade RB, Lee SH, Lee KH, Kang DJ, et al. Large-scale wet-spinning of highly electroconductive MXene fibers. Nature Communications. 2020;11(1):2825.

9. Wang Y, Chen N, Liu Y, Zhou X, Pu B, Qing Y, et al. MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor. Chemical Engineering Journal. 2022;450:138398.

10. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive twodimensional titanium carbide 'clay' with high volumetric capacitance. Nature. 2014;516(7529):78-81.