Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Ultrathin nanoporous metallic films and their integration in sensors

Hyunah Kwon, *,a,b Mariana Alarcón-Correa, a,b Izar Schärf, a and Peer Fischer a,b,c,d

^a Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University,

INF 225, 69120 Heidelberg, Germany

^b Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany

^c Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea

^d Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei

University, Seoul, 03722, Republic of Korea

Metal/Metal alloy	PMMA (wt.%)	Plasma condition (power/ambient/time)			
Au	1.5	200W/air/5min			
Au	5	200W/air/5min			
Pt	5	350W/W10 (Ar 90 %, H ₂ 10 %)/15min			
Mg	1.5	150W/W10 (Ar 90 %, H ₂ 10 %)/15min			
Al	2.5	300W/W10 (Ar 90 %, H ₂ 10 %)/10min			
NiFe	5	300W/W10 (Ar 90 %, H ₂ 10 %)/15min			
AuAg	5	200W/Ar/10min			
AuPt	5	200W/air/10min			
PtPd	5	300W/W10 (Ar 90 %, H ₂ 10 %)/15min			

Supplementary Table 1. Various NPMFs fabrication conditions

Supplementary Figure 1. SEM-EDX mapping of Pt NPMF coated SnO_2 nanostructures. The focus is placed on regions where the SnO_2 nanostructures are exposed. SnO_2 is uniformly deposited on IDE. The Pt NPMF exhibits a uniform coverage across the SnO2 layer, which demonstrates the effective transfer.

Supplementary Figure 2. Optical image of the sensor device. SnO_2 nanostructures are grown on the IDE, and Pt NPMF was transferred onto the active region as shown with the yellow dashed line.

Supplementary Figure 3. SEM images of Pt NPMF after annealing at 500 °C for 2 hours in air. There is no significant morphological change. Scale bar: 200 nm.

Supplementary Figure 4. Concentration-dependent H_2 sensing measurement results with the Pt NPMF transferred onto the sensor, measured a month after fabrication and using the same device, at a voltage of 0.1 V. Sensor operating temperatures are, respectively, (a) 100 °C and (b) 300 °C. H_2 at a concentration of 100, 200, 300, 400, and 500 ppm were exposed consecutively. H_2 exposure and dry air purging were repeated for 2 minutes each. Baseline of the current was subtracted from the original data to visualize the difference in current during H_2 exposure. (c) Sensitivity comparison. The observed saturation of sensitivity values at high concentrations are attributed to the storage of the sensor device in a humid air environment for a month, which may have led to the degradation of the SnO₂ nanostructures.

Supplementary Figure 5. SEM image of Pt NPMF on SnO_2 nanostructures after repeated gas sensing measurements and storage in humid air for a month. Scale bar: 200 nm.

Method Name	Materials	Sacrificial metals	Ultrathin	Transfer	Purity	Ref
Dry synthesis	Au, Pt, Mg, Al, metal alloys, etc.	X	2D-like	О	Ultrapure	This work
Dealloying	Au, Pt, Pd, Cu, Ag, etc.	О	Bulky	Х	Second metal remained	[1]
Vapor dealloying	AuCu	О	2D-like	О	Second metal remained	[2]
Gelation	Au	X	2D-like	0	-	[3]
Electrochemical	Cu	О	Bulky	X	Second metal remained	[4]
AAO-assisted	Pt	X	Bulky	Х	-	[5]
Self-assembly	Au	X	2D-like	0	_	[6]

Supplementary Table 2. Comparison of various techniques to fabricate NPMFs.

[1] G. Scandura, P. Kumari, G. Palmisano, G. N. Karanikolos, J. Orwa, L. F. Dumée, *Ind. Eng. Chem. Res.* 2023, **62**, 1736-1763.

[2] A. Chauvin, W. T. Cha Heu, J. Buh, P. -Y. Tessier, A. -A. El Mel, *npj Flex. Electron.* 2019, 3,
5

[3] K. Hiekel, S. Jungblut, M. Georgi, A. Eychmüller, *Angew. Chem. Int. Ed.* 2020, **59**, 12048-12054.

- [4] E. Castillo, J. Zhang, N. Dimitrov, MRS Bull. 2022, 47, 913-925.
- [5] M. Sener, O. Sisman, N. Kilinc, Catalysts 2023, 13, 459.
- [6] H. Xia, Y. Ran, H. Li, X. Tao, D. Wang, J. Mater. Chem. A 2013, 1, 4678.