Supporting Information for:

Interpretable-machine-learning-guided discovery of dominant intrinsic factors of sensitivity of high explosives

Xianshuang Wang, ^{\phi}Yage He, ^{\sigma}Xinyu Zhang, ^{\sigma}Maoxin Hu, ^{\sigma}Wanzhu Zhao, ^{\sigma}Haohan

Sun, [§]Xiaoning Yang, [§]Xiaodong Liu and [§]Ruibin Liu, [§],*

*School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

[§]Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China.

This PDF file includes:

Supplementary Figures from Figure S1 to S10	•••••• S2
Supplementary Tables from Table S1 to S5	S8

Supplementary Figures

$\begin{array}{c} \mathbf{X}_{\mathbf{m},\mathbf{n}} \rightarrow \\ 1 \end{array} \xrightarrow{\text{Four spectra were randomly}}_{\substack{\text{selected for average as one}\\ new spectrum}} \xrightarrow{\mathbf{n}} \end{array} \xrightarrow{\mathbf{R}} \begin{array}{c} \text{Randomly}\\ \text{select q times} \end{array} \xrightarrow{\mathbf{X}^2_{\mathbf{q},\mathbf{n}}} \\ 1 \end{array}$											
X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}		X _{1,n-1}	X _{1,n}	averaging	X' _{1,1}	X' _{1,2}	 X' _{1,n-1}	X' _{1,n}
X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}		X _{2,n-1}	X _{2,n}	averaging	X' _{2,1}	X' _{2,2}	 X' _{2,n-1}	X' _{2,n}
X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}		X _{3,n-1}	X _{3,n}		X' _{3,1}	X' _{3,2}	 X' _{3,n-1}	X' _{3,n}
X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}		X _{4,n-1}	X _{4,n}				 	
X _{5,1}	X _{5,2}	X _{5,3}	X _{5,4}		X _{5,n-1}	X _{5,n}	averaging	X' _{q,1}	X' _{q,2}	 X' _{q,n-1}	X' _{q,n}
X _{6,1}	X _{6,2}	X _{6,3}	X _{6,4}		X _{6,n-1}	X _{6,n}					
X _{m,1}	X _{m,2}	X _{m,3}	X _{m,4}		X _{m,n-1}	X _{m,n}					

Figure S1. Random sampling and averaging strategy.

Figure S2. Spearman rank correlation matrices of features.

Figure S3. A representative LIPS spectrum of HEs with spectral lines recognition.

Figure S4. LIPS spectra and molecular structures of eight kinds of energetic tetrazole ring-based organic high-nitrogen compounds and eight kinds of benzene ring organics.

Figure S5. Histograms and probability density distribution of selected features of all data sets.

Figure S6. Feature importance analysis of classification model (with benzene rings VS without benzene rings). (a) Confusion matrix figures of prediction results. (b) SHAP analysis of the training data set samples and the RF model. (c) Feature importance directly educed from RF model. (d) Samples distribution in the custom operator feature space of MLogP and OB.

Figure S7. Feature importance analysis of classification model (with tetrazole rings VS without tetrazole rings). (a) Confusion matrix figures of prediction results. (b) Mean SHAP value analysis of the training data set samples and the RF model. (c) SHAP analysis of the training data set samples and the RF model. (d) Feature importance directly educed from RF model.

Figure S8. Feature importance analysis of friction sensitivity model. (a) Mean SHAP value analysis of the training data set samples and the RF model. (b) SHAP analysis of the training data set samples and the RF model. (c) Feature importance directly educed from RF model. (d) Samples distribution in the custom operator feature space of MinPC and AI. (e) Samples distribution in the spectral feature space of C₂ and CN.

Figure S9. Feature importance analysis of electrostatic sensitivity model. (a) Mean SHAP value analysis of the training data set samples and the RF model. (b) SHAP analysis of the training data set samples and the RF model. (c) Feature importance directly educed from RF model. (d) Samples distribution in the custom operator feature space of BalabanJ and OB. (e) Samples distribution in the spectral feature space of Na and CN.

Figure S10. Feature importance analysis of laser sensitivity model. (a) Mean SHAP value analysis of the training data set samples and the RF model. (b) SHAP analysis of the training data set samples and the RF model. (c) Feature importance directly educed from RF model. (d) Samples distribution in the custom operator feature space of NumVE and NumRB (e) Samples distribution in the custom operator feature space of AI and MolWt.

Supplementary Tables

Table 51. A list of organic ring compounds.					
Sample	Chemical name	Sample	Chemical name		
S1	1H-tetrazole	B1	Naphthalene		
S2	5-Aminotetrazole	B2	Anthracene		
S3	1,5-Diaminodiazole	B3	Pyrene		
S4	1-Methyl-5-amine-1H-tetrazole	B4	1,3,5-Triphenylbenzene		
S5	Bitetrazole	В5	5-Phenyltetrazole		
S6	Ditetrazolamide	B6	5-Methyltetrazole		
S7	Ditetrazolomethane	B7	5-Mercapto-1-methyltetrazole		
S8	Ditetrazoliumethane	B8	2H-tetrazole-5-aceticacid		

Table S1. A list of organic ring compounds.

 Table S2. Abbreviation and description for features.

Abbreviation	Description	Abbreviation	Description	
01	Spectral intensity of C atom		Spectral intensity of C atom at	
CI	at 193.1 nm	C2	247.9 nm	
	Spectral intensity of CN	C	Spectral intensity of Ca ion at	
CN	molecule at 388.3 nm	Ca	393.4 nm	
II	Spectral intensity of H atom	C	Spectral intensity of C ₂	
Πβ	at 486.1 nm	C_2	molecule at 516.5 nm	
Na	Spectral intensity of Na	TT	Spectral intensity of H atom at	
Ina	atom at 589.0 nm	H_{α}	656.3 nm	
N	Spectral intensity of N atom	0	Spectral intensity of O atom at	
Ν	at 742.4 nm	0	777.4 nm	
MolWt	Mala and a markable	No LID A	Number of hydrogen bond	
	Molecular weight	NUIIINBA	acceptor	
N. UDD	Number of hydrogen bond	MID	Multi-core oil-water partition	
NullinbD	donor	WILogP	coefficient	
NumVE	Number of valence electrons	NumRB	Number of rotatable bond	
	A useful tool for expressing			
Dalahan I	"topological shape" of		Topological polar surface area	
BalabanJ	molecules or of molecular	IFSA		
	fragments			
MayDC	Maximum value of partial	MinDC	Minimum value of partial abarga	
MaxrC	charge	MilleC	winning value of partial charge	
AI	Aromatic index	OB	Oxygen balance	
Density	Crystal density	-	-	

V1					
Fea	iture type	Feature Abbreviation			
Spectral features by	Atomic spectral features	C1, C2, Ca, H_{α} , Na, H_{β} , N, O			
experiments	Molecular spectral features	CN, C ₂			
Atomic and molecular	Atomic custom descriptors	MaxPC, MinPC			
custom descriptors by	Molecular custom	MolWt, NumHBA, NumHBD, MLogP, NumVE,			
calculation.	descriptors	NumRB, BalabanJ, TPSA, AI, OB, Density			

Table S3. Different types of features

Table S4. Data set division of multiple sensitivities classification tasks.

Category name	Classification standard	Samples	The number
			of final
			spectra of
			each sample
Impact sensitive	Impact sensitivity≤40 J	E1,E2,E3,E5,E7,E9	50
Impact insensitive	Impact sensitivity>40 J	E4,E6,E8	100
Friction sensitive	Friction sensitivity≤360 N	E1,E2,E3,E4,E5	100
Friction insensitive	Friction sensitivity>360 N	E6,E7,E8,E9	100
Electrostatic sensitive	Electrostatic sensitivity≤1200 mJ	E1,E2,E3,E9	100
Electrostatic insensitive	Electrostatic sensitivity>1200 mJ	E4,E5,E6,E7,E8	100
Laser sensitive	Laser sensitivity≤70 J cm ⁻²	E1,E2,E3,E4,E5,E6,E7,E8	50
Laser insensitive	Laser sensitivity>70 J cm ⁻²	Е9	400

Table S5. Data set division of classification tasks for comparison.

Category name	Classification standard	Samples	The number of final
			spectra of each sample
with benzene	Number of benzene rings	E4,E6,E8,B1,B2,B3,B4,B5,B6	100
rings	in molecular structure≥1		
without benzene	Number of benzene rings	\$1,\$2,\$3,\$4,\$5,\$6,\$7,\$8,E1,E2,	50
rings	in molecular structure=0	E3,E5,E7,E9,B7,B8	
with tetrazole	Number of tetrazole rings	\$1,\$2,\$3,\$4,\$5,\$6,\$7,\$8,\$5,\$6,	100
rings	in molecular structure≥1	B7,B8	
without tetrazole	Number of tetrazole rings	E1,E2,E3,E4,E5,E6,E7,E8,E9,B1,	100
rings	in molecular structure=0	B2,B3,B4	