## **Supplementary material**

## Electronic properties modulation for two-dimensional materials of boron phosphorus monolayer and derived single atom catalysts for the hydrogen evolution reaction

Yuhua Wei<sup>4</sup> Feng Gao<sup>1,2,3</sup>\* Hong Liu<sup>1,2,3</sup> Wei Qi<sup>2,3</sup> Sichao Du<sup>2,3</sup> Hao Xie<sup>1,2,3</sup>

Duo Xiao<sup>1,2,3</sup>

<sup>1</sup>School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, China

<sup>2</sup>Academy of Edge Intelligence Hangzhou City University, Hangzhou City University, Hangzhou,

Zhejiang 310015, China

<sup>3</sup>Zhejiang Engineering Research Center for Edge Intelligence Technology and Equipment, Hangzhou City University, Hangzhou, Zhejiang 310015, China

<sup>4</sup>Department of Physics, International Centre of Quantumand Molecular Structures, Shanghai University, Shanghai 200444, China

## Computational details about HER.

To evaluate the stability of the supported single atom catalysts (SACs), the binding energy  $(E_b)$  can be calculated by the following equation:

$$E_{b}(TM) = E_{TM@sub} - E_{sub} - E_{TM}$$
(S1)

where  $E_{TM@sub}$ ,  $E_{sub}$  and  $E_{TM}$  represent the total energies of TM@2D B<sub>X</sub>N materials, 2D B<sub>X</sub>N materials substrate and TM single atom, respectively. Generally, a negative

<sup>\*</sup>Corresponding author.

E-mail address: gaofengphys@163.com (Feng Gao).

 $E_b$  means stable binding of TM atom on  $B_XN$  materials surface, and a more negative value indicates a stronger bonding strength.

To evaluate the HER activity of SACs, the Gibbs free energy change ( $\Delta G_{H^*}$ ) of H adsorption is obtained using the method of Nørskov [1], where the hydrogenation process could be expressed as equation (S2):

$$\mathrm{H}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{g}) \quad \Delta \mathrm{G} = 0 \,\mathrm{eV}$$
 (S2)

Therefore, according to the Sabatier principle, the  $\Delta G_{H^*}$  was a reliable descriptor to evaluate HER activity of catalysts [2]. It is well established that the ideal value for HER was  $\Delta G_{H^*}=0$ , that is, the absolute value of  $\Delta G_{H^*}$  closes to zero, meaning the SACs own excellent catalytic activity and it was given in equation (S3):

$$\Delta G_{H^*} = \Delta E_H + \Delta E_{ZPE} - T\Delta S_H + \Delta G(pH)$$
(S3)

 $\Delta E_{\rm H}$  is the differential hydrogen adsorption energy, which is obtained by:

$$\Delta E_{\rm H} = E_{\rm nH^*} - E_{\rm (n-1)H^*} - \frac{1}{2} E_{\rm H_2}$$
(S4)

 $E_{nH^*}$  and  $E_{(n-1)H^*}$  describe the total energies of the 2D  $B_XN$  materials substrate with n and (n-1) adsorbed hydrogen atom, respectively, while  $E_{H_2}$  is the total energy of a  $H_2$ molecule in gas.  $\Delta E_{ZPE}$  and  $\Delta S_H$  are the correction of in zero-point energy and entropy change between the adsorbed H atom and 1/2  $H_2$  in gas phase, respectively. Therefore,  $\Delta E_{ZPE}$  is defined as:

$$\Delta E_{ZPE} = E_{ZPE}^{nH^*} - E_{ZPE}^{(n-1)H^*} - \frac{1}{2}E_{ZPE}^{H_2}$$
(S5)

where  $E_{ZPE}^{nH^*}$  and  $E_{ZPE}^{(n-1) H^*}$  are the zero-point energy of (n+1) and n adsorbed H atoms on the TM@2D B<sub>X</sub>N materials, respectively. The  $E_{ZPE}^{H_2}$  is the zero-point energy of H<sub>2</sub> molecule in the gas phase.  $\Delta S_H$  is defined as [3,4]:

$$\Delta S_{\rm H} = \sum_{i=1}^{3N} \left[ -R\ln(1 - e^{\frac{-hv_i}{Tk_{\rm B}}}) + \frac{N_{\rm A}hv_i}{T} \frac{e^{\frac{-hv_i}{Tk_{\rm B}}}}{1 - e^{\frac{-hv_i}{Tk_{\rm B}}}} \right] - \frac{1}{2} S_{\rm H_2}$$
(S6)

In general,  $\Delta S_H$  is calculated as  $\Delta S_H \approx -1/2 S_{H_2}$ , which is approximately 0.20 eV when the value of pH is zero under standard conditions [5]. In this study, all calculations consider the HER occurs in all pH value.

At present, there has been controversy on the pH dependence of the catalytic activity [6-8]. Nevertheless, a thermochemical approach established by Nørskov et al. have predicted results in conformity to the experimental trends [2]. Therefore, this theoretical method is widely used to assess the pH dependent free energy barrier for H-adsorption on catalytic surfaces. On the basis of this theory, the entropy of hydrogen ion in an electrochemical process mainly depends on the pH. The effect of pH to  $\Delta G_{H^*}$  is regarded as an additional entropic potential, then through the correction of entropy changes and vibration at 298.15 K, we can obtain the corrected Gibbs free energy change ( $\Delta G(pH)$ ) [9], using equation (S7):

$$\Delta G(pH) = \kappa_{\rm B} T \ln(10) \times pH \tag{S7}$$

where  $\Delta G(pH)$  is closely in connection with the pH of the electrolyte and is an additional barrier for the H-adsorption. This simple expression as a function of pH values could be adopted to evaluate the catalytic performance of HER. Its essence is a thermodynamic estimate due to the change of the free energy of hydrogen ions in the electrolyte at different pH values. In equation (7), the value of k<sub>B</sub>Tln(10) approximately equals to  $5.92 \times 10^{-2}$  eV at T = 298.15 K. At pH=14,  $\Delta G(pH)$  reaches a maximum value of 0.83 eV, which is in agreement with previous study (0.78 eV) [10].

Hence, the catalytic activity of SACs surface can be effectively improved by adjusting the pH of the electrolyte.



Fig. S1. Phonon band structure of the 2D (a)  $B_2N$  (b)  $B_3N$  and (c)  $B_5N$  monolayers.



Fig. S2. The different TM atoms adsorption on the  $B_3N$  monolayer compounds and the corresponding binding energy ( $E_b$ ), cohesive energy ( $E_{coh}$ ) and their energy difference ( $\Delta E$ ).



Fig. S3. The different TM atoms adsorption on the  $B_5N$  monolayer compounds and the corresponding binding energy ( $E_b$ ), cohesive energy ( $E_{coh}$ ) and their energy difference ( $\Delta E$ ).



Fig. S4. The fluctuation of total energy in AIMD simulations for Ti@B<sub>2</sub>N, Mn@B<sub>3</sub>N, Fe@B<sub>5</sub>N and Mo@B<sub>5</sub>N monolayers at 300 K.



Fig. S5. The density of states (DOS) spectra for TM@B<sub>2</sub>N, TM@B<sub>3</sub>N and TM@B<sub>5</sub>N. The Fermi levels are set to zero and indicated black dashed lines.



Fig. S6. The electronic conductivity variation of TM@B5N SACs.



Fig. S7. Energy landscape of the Heyrovsky and the Tafel reactions on the (a-b)  $Ti@B_5N$  and (c-d)V@B\_5N monolayers including the reaction coordinate structure of the initial state (IS), transition state (TS), and final state (FS).



Fig. S8. Energy landscape of the water dissociation reaction on the  $Ti@B_5N$  and  $V@B_5N$  monolayers including the reaction coordinate structure of the initial state (IS), transition state (TS), and final state (FS).



Fig. S9. Under the CPM model, the hydrogen adsorption free energy  $\Delta G(H^*)$  on TM@B<sub>5</sub>N SACs corresponding to different potentials.

| System              | Adsorption site  | E <sub>b</sub> (eV) |
|---------------------|------------------|---------------------|
| Sc@B <sub>2</sub> N | B1 (Top site)    | -4.07               |
|                     | B2 (Top site)    | -4.10               |
|                     | B3 (Top site)    | -4.60               |
|                     | N (Top site)     | -4.60               |
|                     | H1 (Hollow site) | -4.75               |
| Sc@B <sub>3</sub> N | B1 (Top site)    | -3.15               |
|                     | B2 (Top site)    | -3.81               |
|                     | B3 (Top site)    | -3.81               |
|                     | B4 (Top site)    | -3.75               |
|                     | N (Top site)     | -3.81               |
|                     | H1 (Hollow site) | -3.59               |
|                     | H2 (Hollow site) | -3.91               |
|                     | H3 (Hollow site) | -3.75               |
| Sc@B5N              | B1 (Top site)    | -4.18               |
|                     | B2 (Top site)    | -5.15               |
|                     | B3 (Top site)    | -5.15               |
|                     | B4 (Top site)    | -5.16               |
|                     | N (Top site)     | -4.52               |
|                     | H1 (Hollow site) | -4.18               |
|                     | H2 (Hollow site) | -5.18               |

Table S1. The different adsorption sites of TM atoms and the corresponding binding energy ( $E_b$ ). Taking Sc@B<sub>2</sub>N, Sc@B<sub>3</sub>N and Sc@B<sub>5</sub>N systems as examples.

## References

[1] A. Valdes, Z.W. Qu, G.J. Kroes, J. Rossmeisl, J.K. Norskov, Oxidation and photooxidation of water on TiO<sub>2</sub> surface, J. Phys. Chem. C. 112 (2008) 9872–9879.

[2] J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, Trends in the Exchange Current for Hydrogen Evolution, J. Electrochem. Soc. 152 (2005) J23–J26.

[3] J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts, Nat. Chem. 1 (2009) 37-46.

[4] Y.A. Zhu, D. Chen, X.G. Zhou, W.K. Yuan, DFT studies of dry reforming of methane on Ni catalyst, Catal. Today. 148 (2009) 260–267.

[5] J. Hu, S. Zheng, X. Zhao, X. Yao, Z. Chen, A theoretical study on the surface and interfacial properties of Ni<sub>3</sub>P for the hydrogen evolution reaction, J. Mater. Chem. A. 6 (17) (2018) 7827–7834.

[6] G. García, M.T.M. Koper, Stripping voltammetry of carbon monoxide oxidation on stepped platinum single-crystal electrodes in alkaline solution, Phys. Chem. Chem. Phys. 10 (25) (2008) 3802.

[7] S. Intikhab, J.D. Snyder, M.H. Tang, Adsorbed Hydroxide Does Not Participate in the Volmer Step of Alkaline Hydrogen Electrocatalysis, ACS. Catal. 7 (12) (2017) 8314–8319.

[8] I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastian-Pascual, V. Climent, J.M. Feliu, M. T.M. Koper, Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes, Nat. Energy. 2 (2017) 17031.

[9] D.C. Tranca, F. Rodríguez-Hern'andez, G. Seifert, X. Zhuang, Theoretical models for hydrogen evolution reaction at combined Mo2C and N-doped graphene, J. Catal. 381 (2020) 234–247.

[10] F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene, ACS. Nano. 5 (2011) 26–41.