Adsorptive and photo-Fenton properties of bimetallic MIL-100(Fe,Sn) and MIL-100(Fe,Ir)

MOFs toward removal of tetracycline from aqueous solutions

Naghmeh Sadat Mirbagheri^{ab}, Philipp A. Heizmann^{ab}, Vanessa Trouillet^{cd}, Jan Büttner ^{aef}, Anna

Fischer^{aef} and Severin Vierrath^{ab*}

- a. University of Freiburg, Institute and FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- b. Electrochemical Energy Systems, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- c. Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- d. Institute for Applied Materials, Energy Storage Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- e. Institute of Inorganic and Analytic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- f. Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- * Corresponding author's E-mail: <u>severin.vierrath@imtek.uni-freiburg.de</u>

Synthesized MOEs	Dark adsorption Photo-Fenton degradat	
Synthesized Wors	TC removal (%)	TC removal (%)
MIL-100(Fe)	13.2 ± 2.6	57.3 ± 6.3
MIL-100(Fe,Sn-1.8)	12.3 ± 3.0	27.9 ± 4.8
MIL-100(Fe,Sn-3.5)	16.3 ± 1.7	38.3 ± 7.7
MIL-100(Fe,Sn-7.1)	18.0 ± 2.0	58.0 ± 5.6
MIL-100(Fe,Sn-14.2)	16.6 ± 0.9	51.2 ± 9.6
MIL-100(Fe,Ir-26.7)	32.1 ± 3.1	55.9 ± 1.2
MIL-100(Fe,Ir-50.2)	43.9 ± 0.7	44.8 ± 1.0
MIL-100(Fe,Ir-62.3)	47.6 ± 2.6	43.2 ± 0.3
MIL-100(Fe,Ir-100.5)	52.2 ± 3.5	38.5 ± 2.7

Table S1. Dark adsorption and photo-Fenton degradation efficiency of the synthesized MOFs

Fig. S1. XRD spectra of MIL-100(Fe), MIL-100(Fe,Sn-7.1), and MIL-100(Fe,Ir-62.3).

Fig. S2. Nitrogen adsorption-desorption isotherms of MIL-100(Fe,Ir-62.3).

MOFs		mol _{dopant} /(mol _{dopant} + mol _{Fe})		
	Dopant	Initial reactants	Synthesized MOFs	
MIL-100(Fe,Sn-7.1)	Sn ²⁺	9.9%	3.6%	
MIL-100(Fe,Ir-62.3)	lr ³⁺	49%	1.6%	

 Table S2. Doping metal content of the initial reactants and synthesized MOFs