Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Ionic liquid-based chemodosimeter probe for selective detection and removal of bisulfite in pure aqueous system, with potential uses in biosensing⁺

Nishu Choudhary,^{ab} Sanjay Yadav,^{ab} Surjit Bhai,^{bc} Vasavdutta Sonpal,^{bc} Bishwjit Ganguly^{*bc} and Alok Ranjan Paital^{*ab}

S. No.	Content	Page No.
1.	¹ H, ¹³ C NMR, mass spectra, and DSC of TSIL-1 (Fig. S1-S4)	S2-S3
2.	¹ H, ¹³ C NMR and mass spectra of TSIL-2 (Fig. S5-S8)	S4-S5
3.	Emission intensity plot of TSIL-1 with bisulfite at different time and	S6
	pH (Fig. S9). TCSPC experiment of TSIL-1before and after the	
	addition of bisulfite (Fig. S10)	
4.	¹ H NMR and Mass spectrum of TSIL-1 with bisulfite (Fig. S11-	S7
	S12)	
5.	Mass spectrum of TSIL-2 with bisulfite (Fig. S13)	S8
6.	¹ H NMR of the dried organic phase after extraction and after the	S9
	third recycling experiment (Fig. S14-S15)	
7.	Real sample quantification of granulated sugar and crystal sugar	S10-S11
	with calibration plot (Fig. S16). Performance comparison of the	
	probe (Table S1).	

Fig. S1 ¹H NMR of hydrophilic TSIL-1 at 500 MHz in D_2O solvent.

Fig. S2 ¹³C NMR of hydrophilic TSIL-1 at 500 MHz in D₂O solvent.

Fig. S3 ESI-MS of TSIL-1 (+ve Scan).

Fig. S4 DSC profile of **TSIL-1** showing room temperature ionic liquid behaviour (mp: -90 °C).

Fig. S5 ¹H NMR of hydrophobic TSIL-2 at 600 MHz in Acetone-d6 solvent.

Fig. S6 ¹³C NMR of hydrophobic TSIL-2 at 600 MHz in Acetone-d6 solvent.

Fig. S7 ESI-MS of TSIL-2 (-ve Scan).

Fig. S8 ESI-MS of TSIL-2 (+ve Scan).

Fig. S9 (A) The fluorescence intensity of the probe (TSIL-1) with addition of bisulfite over time (190 μ M bisulfite, pH ~ 7.2); (B) The fluorescence emission of the probe (TSIL-1) with and without bisulfite at different pH.

Fig. S10 The time-correlated single photon counting (TCSPC) experiment of the probe material (**TSIL-1**) before and after bisulfite addition.

Fig. S11 ¹H NMR spectrum of TSIL-1 with NaHSO₃ in D_2O .

Fig. S13 The mass spectrum of organic phase (**TSIL-2** in ethylacetate) showing formation of bisulfite adduct with time.

Fig. S14 The dried organic phase from liquid-liquid extraction experiment showing formation of bisulfite adduct in CDCl₃.

Fig. S15 The dried organic phase from the third cycle of recycling experiment from liquidliquid extraction experiment showing formation of bisulfite adduct in CDCl₃.

Fig. S16 Real sample quantification of (A) Granulated sugar and (B) Crystal sugar; (C) Calibration plot.

Table S1	Performance cor	nparison	of the p	probe with	n some	literature	reports.
----------	-----------------	----------	----------	------------	--------	------------	----------

S.No	Probe	Type of response	Sensing Phase	Removal Studies	L.O.D Value	Ref
1	Functionalized silica	Turn off	Aqueous	yes	64 ppb	[8]
2	Organic Probe	NIR	Aqueous + DMSO	No	24 nM	[10]
3	Benzopyranium Salt	Ratiometric	Aqueous + EtOH	No	0.017 μM	[2]
4	Organic Probe	Ratiometric	Aqueous + DMF	No	12.6 nM	[16]
5	Dicyanoisophor one- quinolinium- based	Ratiometric	Aqueous + DMSO	No	2.5 μΜ	[18]

6	Organic Salt	Turn off	Aqueous + DMSO	No	2.1 µM	[19]
7	Coumarin- Benzopyran derivative	Turn on	Aqueous	No	177 nM	[20]
8	Triphenylamine- Benzopyrylium based	Turn on	Aqueous	No	12.7 nM	[21]
9	Unsymmetrical azine	Turn off	Aqueous + organic	No	25 nM	[22]
10	Organic probe	Ratiometric	Aqueous + DMSO	No	58 µM	[29]
11	Organic Probe	Turn on	Aqueous + Acetonitrile	No	10 µM	[30]
12	Ionic liquid (This work)	Turn on	Aqueous	Yes	91 nM	This work