Supplementary document

Enhanced activity of highly ordered pristine and black anodic TiO₂ nanotubes for high performance supercapacitors

Farzad Nasirpouri*, Leila Jafari-Foruzin, Amirali Farmani, Elham Hosseinpour, Hassan Yadipour

The CV data was used to calculate the specific capacitance values for various TNT based active materialcoated electrodes using the following equation¹:

$$C_s = \frac{\int I.dV}{A.s.\Delta V} \tag{1}$$

Where C_s is the areal capacitance (in F cm⁻²), s is the scan rate (in mV s⁻¹), ΔV is the potential window (in V) and the A is the surface area of the electrode exposed to the electrolyte. As was reported at Fig. S1(a), the areal capacitance of the black TNT (TNT-R) at a scan rate of 50 mV s⁻¹ was 0.78 mF cm⁻², and it is significantly greater than that of TNT-1 h-30 min, TNT-4 h-30 min, and TNT-4 h-1h. The highest value of areal capacity obtained for TNT-R which is due to the decrease of the band gap energy owing to the microstructural defects such as oxygen vacancies², ³. **Table S1** summarises the data obtained from cyclic voltammetry for calculated the areal capacitance. Also, the variation of areal capacitance of TNT-R as a function of potential scan rate is reported in **Fig.S1 (b)**. The areal capacitance of TNT-R decreases when the scan rate increases. The areal capacitance of TNT-R is decreased from 1.40 to 0.43 mF cm⁻² with increasing the scan rate from 2 to 100 mV s⁻¹.⁴

Fig S (a) the calculated capacitance for different electrodes at scan rate 50 mV s⁻¹ and (b) the areal capacitance of TNT-R at scan rate 2, 5, 50 and 100 mV s⁻¹

Table 1. Areal capacity of different electrodes at scan rate 50 mV s⁻¹ (obtained from CV)

Electrode	Areal capacitance
	(uF cm ⁻²) obtained from CV
TNT-1 h-30 min	0.00285
TNT-4 h-30 min	0.00181
TNT-4 h-1h	0.00355
TNT-R	783.76549

- 1. M. Kumar, S. Polaki and S. Dhara, *Journal of Energy Storage*, 2024, **79**, 110160.
- 2. S. Kalathil, M. M. Khan, S. A. Ansari, J. Lee and M. H. Cho, *Nanoscale*, 2013, **5**, 6323-6326.
- 3. Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu and J. Ye, *journal of materials chemistry A*, 2013, **1**, 5766-5774.
- 4. C. Zhang, S. Xu, D. Cai, J. Cao, L. Wang and W. Han, *Electrochimica Acta*, 2020, **330**, 135277.