Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

MgIn₂S₄ decorated MOF-derived C/N-CeO₂ nanorod heterojunction as efficient photocatalyst towards H₂O₂ production reaction and H₂ evolution reaction

Jayashree Panda^a, Pragyandeepti Behera^a, Satyabrata Subudhi^a, Suraj Prakash Tripathy^a, Gayatri Swain^a, Srabani Dash^a, Kulamani Parida^{a*}

Centre for Nano Science and Nanotechnology, Siksha "O" Anusnadhan (Deemed to be University), Bhubaneswar-751030, Odisha, India

E-mail: Corresponding author: kulamaniparida@soa.ac.in

Supporting Information Contents:

No. of Pages: 17 No. of Figures: 12 No. of Tables: 8 No of equation: 2

1. Materials and methods:

1.1 Chemicals utilized: Cerium chloride $[CeCl_3.7H_2O]$, 2-Amino-1, 4-benzeen dicarboxylic acid $[H_2BDC-NH_2]$, Magnesium nitrate $[Mg (NO_3)_2. 6H_2O]$, Indium nitrate $[In (NO_3)_2.xH_2O]$, Thioacetamide $[CH_3CSNH_2]$ were purchased from sigma Aldrich. Methanol, and N, N- Dimethyl formamide (DMF) were obtained from MERCK and are used without further purification.

1.2 Synthesis Route of C/N-CeO₂, MIS, and C/N-CeO₂/MIS:

1.2.1 Synthesis Route of Ce-MOF and derived C/N-CeO₂:

Ce based SBUs coordinated with amine (-NH₂) group functionalized BDC linkers to prepare the MOF which is synthesised by hydrothermal technique. In this preparation strategy, 0.74 g of CeCl₃.7H₂O and 0.36 g of H₂BDC-NH₂ were dissolved in 30 mL of DMF separately, followed by each solution being stirred (30 min) to obtain Ce-metal and BDC-NH₂ ligand precursor solution for MOF preparation. The obtained Ce salt solution was mixed with the prepared H₂BDC-NH₂ solution and subjected to stirring for 60 min. Then, the pale-yellow suspension was transferred into a Teflon-lined stainless-steel autoclave and kept in the hot air oven for 24 h at 150 °C for hydrothermal treatment. Subsequently the autoclave was allowed to cool down naturally, and the sample was collected by centrifugation. Further, the obtained product was activated in methanol and washed several times with methanol (to remove unreacted metal salts and ligands). Thereafter, the material was dried overnight at 343 K and finally the off white-coloured sample was ground and labelled as Ce-MOF. To synthesize the C/N-CeO₂ photocatalysts, the as-prepared Ce-MOFs were calcined in a muffle furnace for 2 h at a heating rate of 5 °C min⁻¹ from room temperature (RT, 25°C) to 450 °C under ambient air atmosphere.

1.2.2. Synthesis Route of MIS:

In a usual procedure, first Mg (NO₃)₂.6H₂O and In (NO₃)₃.xH₂O were dissolved in a beaker containing 50 mL of distilled water under ultra-sonication for 1 hour at room temperature. Afterwards CH₃CSNH₂ solution in DI was added slowly to the above suspension and kept under ultra-sonication for another 30 minutes. For this purpose the ratio of Mg: In: S should be maintained in accordance to 1:2:8. Then, the clear suspension was transferred into a Teflon-lined stainless-steel autoclave and hydrothermally treated at 180 °C for 12 hours. Subsequently

the autoclave was allowed to cool down naturally, and the sample was then centrifuged and washed with water and ethanol each three times, followed by drying in an oven to form the orange coloured desired product.

1.2.3. Synthesis Route of C/N-CeO₂/MIS (MC-x) Heterostructure:

For the synthesis of composites MC-x, first of all, 0.3 g of the as-synthesised C/N-CeO₂ was dispersed in 40 mL of distilled water through ultrasonication for almost 30 minutes (solution–A). Meanwhile, in another beaker calculated amounts of Mg(NO₃)₂·6H₂O and In (NO₃)₃·xH₂O were mixed in a ratio of 1:2 (Mg/In) with 20 mL of distilled water and stirred for 30 minutes (solution–B). Then, aqueous solution of C₂H₅NS was added slowly to the solution–B by maintaining the proportion as 1:2:8 (Mg/In/S) under ultrasonication for 30 minutes, followed by stirring at room temperature for 30 minutes. Thereupon, both solution-A and B was intermixed with stirring for another 30 minutes. Subsequently, the suspension was placed in a 100 mL Teflon-lined stainless-steel autoclave and hydrothermally treated at 180 °C for 12 hours. The sample was then centrifuged and washed with water and ethanol each three times, followed by drying in an oven to form the 10, 20, and 30 wt % MIS decorated on C/N-CeO₂, C/N-CeO₂/MIS composites denoted as MC-x where, x = 1, 2, 3 respectively. The schematic synthesis protocol of all fabricated photocatalysts was displayed in scheme-1.

2. Characterization Details:

2.1. Physicochemical Characterization:

X-ray diffraction study (XRD) of prepared samples were estimated in 20 range of 5°-80° by Rigaku Ultima IV instrument equipped with Cu K α X-ray source ($\lambda = 0.154$ nm). JASCO V-750 spectrophotometer was used to study the optical property of synthesized samples, taking BaSO₄ as the reference. Morphology and internal topological behavior of C/N-CeO₂, MIS, and C/N-CeO₂/MIS was determined via ZEISS SUPRA-55 (Scanning electron microscopy (SEM) and JEOL JEM 2100 (Transmission electron microscopy (TEM) instruments. VG microtech multilab ESCA 3000 spectrometer fitted with Mg-K α -X-ray source for XPS characterization and ICP-OES analysis was performed with the help of Elementar Vario EL III Carlo Erba 1108 elemental analyser to investigate the binding energy change and determine the wt % of element present in target photo catalyst respectively. Surface texture i.e. N₂ adsorption desorption, surface area and pore distribution of prepared photocatalyst was analysed by NOVA2200e, Quantachrome Apparatus at de-gassing temperature 200 °C for 7 hrs. Agilent 7890B GC and the column is HP-5MS was used for GC-analysis of target product i.e. biphenyl. Multi-channel IVIUMnSTAT was used for electrochemical characterization of the synthesized photo catalyst in presence of 0.1 M Na₂SO₄ aqueous solution.

2.2 Electrochemical characterization:

Working electrodes were prepared using the drop casting process over fluorine doped tin oxide (FTO) glass. The FTOs were first thoroughly cleaned using ultrasonication in deionized water and ethanol before being dried in a hot air oven at 100°C. The sample was then applied to the conducting surface of the FTO (1 mg photocatalyst, 1.4 mL ethanol, 40 μ L nafion, and 1.6 mL distilled water, all sonicated for 30 min). A typical three-electrode cell is used for electrochemical measurements, with the platinum electrode serving as a counter, the saturated Ag/AgCl electrode serving as the reference electrode, and the sample coated FTO serving as the working electrodes, respectively. The entire analysis was completed in an aqueous solution of 0.1 M Na₂SO₄.

3. Photocatalytic Experimental Setup:

The above synthesized materials were carried out for three types of photocatalytic applications as explained below:

3.1. Photocatalytic H₂O₂ production setup:

The photocatalytic H_2O_2 production reaction of C/N-CeO₂, MIS, and C/N-CeO₂/MIS-2 photocatalysts was carried out in an oxygen saturated atmosphere under UV-Visible light irradiation for 2 hour. For this H_2O_2 evolution experiment, 20 mg of each photocatalyst were dispersed in 20 mL of solution (18mL DI + 2mL Isopropanol) followed by ultrasonication for 15 minutes. Furthermore, at room temperature only, the solution was illuminated with 250 W Hg-lamp followed by oxygen purging for 45 minutes. The suspension was centrifuged and filtered to obtain clear filtrate for analysis after 2 h of photocatalytic reaction. After that, 2 mL of clear filtrate was mixed with 2 mL of 0.1 M potassium iodide and 0.05 mL of 0.01 M ammonium molybdate solution for colour generation before running the spectra. Keeping at rest in dark for 5-10 minutes, the resultant mixture was analysed using a UV-Vis spectrophotometer centred at 350 nm.

3.2. Photocatalytic H₂ evolution setup:

The photocatalytic proficiency of the fabricated binary composite towards hydrogen (H₂) evolution was detected in a gas-closed quartz batch reactor of 100 mL capacity. Typically, 20 mg of photocatalyst powder were dispersed in 20 mL of 10 % (v/v) methanol-water solution, and a 150 W Xe arc lamp was used as the light source, which was kept at a suitable distance from the reaction mixture. Prior to light illumination, the reactor was degassed by purging N₂ gas for 1 h to remove O_2 from the system. Also, continuous stirring condition was maintained throughout the reaction period using a magnetic stirrer to avoid coagulation of nanoparticles. The amount of H₂ evolved after 1 h of light irradiation was calculated by using the downward displacement of water technique. The blank experiment suggested that there is no evolution of hydrogen in absence of light and photocatalyst displaying the pivotal role of both for the H₂O reduction reaction.

3.3. Photocatalytic O₂ evolution setup:

Further the photocatalytic water oxidation activity was evaluated for the as synthesised material using another reactor fitted with a chiller and a light source (UV-Visible light). For this experiment, 20 mg of catalyst was poured in the quartz container and 20 mL of 0.05M AgNO₃ solution was added to it, followed by stirring for 30 minutes in dark condition in order to maintain the adsorption-desorption equilibrium. After that, N₂ gas was bubbled through the solution for 30 minutes for deaeration purpose to ensure the oxygen evolved during the processes is due to water splitting reaction only. Further, a 150 W Xe arc lamp was used as light source to irradiate light in the suspension for 1 h. Then, the produced oxygen was quantified by an Agilent 7890b-series GC instrument equipped with the necessary items. Moreover, the apparent conversion efficiency (ACE) for H₂ and O₂ evolution and solar to chemical conversion efficiency (SCC) for H₂O₂ production using the best photocatalyst was evaluated with detailed calculation as below.

4. Calculation of Apparent Conversion Efficiency (ACE)

(a) ACE of MC-2 composite towards H_2 evolution (419.24 µmol h⁻¹) under light irradiation (150W Xe arc lamp) was calculated by the formula as stated below. [S1]

SCE = No. of moles of H₂ produced per sec. * Heat of combustion in kJ/mole (Δ Hc of H₂) = 0.11646 * 10^-6 mole/sec * 285.8 * 10^3 J/mole

= 33.284 * 10^-3 J/sec

= 0.03328 W

ILI = Intensity of used Hg lamp * Distance of lamp from solution * Surface area of the spherical region $(2\pi r)$ on which light is focused

- $= 70 \text{mW}/\text{cm}^{2} * 3.14 * (1.5 \text{cm})^{2}$ = 494.55 mW= 0.4945 W $\text{ACE} = \frac{0.03328 W}{0.4945 W} = 6.73 \%$
- (b) ACE of MC-2 composite towards O₂ evolution (210.09 μmol h⁻¹) under light irradiation (150W Xe arc lamp) was calculated by the formula as stated above. [1]

SCE = No. of moles of O_2 produced per sec. * Heat of combustion in kJ/mole (Δ Hc of O_2)

- = $0.05835 * 10^{-6}$ mole/sec * 285.8 * 10^{-3} J/mole
- = 16.676 * 10^-3 J/sec

$$= 0.01667$$
 W

ILI = Intensity of used Hg lamp * Distance of lamp from solution * Surface area of the spherical region $(2\pi r)$ on which light is focused

 $= 70 \text{mW}/\text{ cm}^{2} * 3.14 * (1.5 \text{cm})^{2}$ = 494.55 mW= 0.4945 W $\text{ACE} = \frac{0.01667 \text{ W}}{0.4945 \text{ W}} = 3.37 \%$

(c) Calculation of solar to chemical conversion efficiency (SCC %)

SCC of MC-2 towards H_2O_2 generation under 250 W Hg-lamp can be calculated by following the equation below [2]:

$$\Rightarrow SCC \% = \frac{\Delta G^{\circ} for H_2 O_2 generation \left(\frac{J}{mol}\right) \times H_2 O_2 produced (mol)}{Input energy (W) \times reaction time (s)} \times 100 \dots (S2)$$

Further, for H_2O_2 evolution, ΔG° is 117 kJ·mol⁻¹. The irradiance of 250 W Hg-lamp is 1.33 Wcm⁻² and irradiated area is 84.78 cm². In a 1 h of reaction time, the amount of H_2O_2 produced is 56.25 µmol.

Input Energy (W) = Irradiance (W cm⁻²) * Irradiated area (cm²)

Fig. S2. EPR Spectra of (a) C/N-CeO₂, (b) MIS.

Fig. S3. a) BET surface area and (b) pore size distribution of C/N-CeO₂, MIS, and MC-2.

Fig. S4. XPS survey scan spectra of (a) C/N-CeO₂, (b) MIS, and (c) MC-2

Fig. S5. Zeta potential plot of C/N-CeO₂ and MIS

Fig. S6. EDS mapping of the element distribution in MC-2.

Fig. S7. TRPL plot of C/N-CeO₂ and MC-2 composite

Fig. S8. Ultraviolet photoemission spectroscopy (UPS) spectra of (a) C/N-CeO₂ and (b) MIS

Ce 3d C/N- 882.4 882.4 891.1 900.7 906.5 916.8 1.2 CPN- 882.5 882.5 898.5 901.1 901.3 907.2 916.9 Difference 0.1 0.6 0.1 C/N- 529.7 531.3 1.3 O Is C/N- 529.7 531.3 Reason Lattice oxygen Oxygen vacancy oxygen C/N- 284.95 286.1 289.2 1.3 C/N- 284.95 286.1 289.2 C/N- 284.95 286.29 288.9 Difference 0.0.3 MIC-2 288	Binding energy				Ref.						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					C	e 3d	1				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	C/N- CeO ₂	882.4	884.1	889.1	898.4	9	01.1	900.7	906.5	916.8	1,2
$\begin{array}{c c c c c c c c } \hline Difference & 0.1 & 0.8 & 0.4 & 0.1 & 0.0 & 0.6 & 0.7 & 0.1 \\ \hline Reason & {}^3d_{3/2} & {}^3d_{3/2} & {}^3d_{3/2} & {}^3d_{5/2} & {}^3d_{5/2} & {}^3d_{5/2} & {}^3d_{5/2} \\ \hline & & & & & & & & & & & & & & & & & &$	MC-2	882.5	884.9	889.5	898.5	9	01.1	901.3	907.2	916.9	
$\begin{tabular}{ c c c c c c c } \hline $\mathbf{Reason} & $3\mathbf{d}_{3/2} $	Difference	0.1	0.8	0.4	0.1		0.0	0.6	0.7	0.1	
$\begin{tabular}{ c c c c c c } \hline O 1s$ \\ \hline C/N- $529.5 $531.3 $ 1^3 \\ \hline $MC-2$ $529.7 $531.9 $533.2 \\ \hline $Difference $0.2 $0.6 $ \\ \hline $Reason $Lattice oxygen $Oxygen vacancy $Surface adsorbed $oxygen $0xygen $0xygen $0xygen 1^4 \\ \hline $MC-2$ $0.6 $ \\ \hline $N1s $ \\ \hline $N1s $ \\ \hline $N1s $ \\ \hline $MC-2$ $399.40 $ \\ \hline $MC-2$ $284.85 $286.1 $289.2 $ \\ \hline $MC-2$ $284.85 $286.1 $289.2 $ \\ \hline $MC-2$ $284.95 $286.29 $288.9 $ \\ \hline $MC-2$ $284.95 $286.29 $288.9 $$	Reason	$^{3}d_{3/2}$	$^{3}d_{3/2}$	$^{3}d_{3/2}$	$^{3}d_{3/2}$	3	d _{5/2}	$^{3}d_{5/2}$	$^{3}d_{5/2}$	$^{3}d_{5/2}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					C) 1s					
$\begin{tabular}{ c c c c c c c } \hline CeO_2 & 529.7 & 531.9 & 533.2 \\ \hline MC-2 & 529.7 & 531.9 & 533.2 \\ \hline Difference & 0.2 & 0.6 & \\ \hline Reason & Lattice oxygen & Oxygen vacancy & Surface adsorbed oxygen \\ \hline & & & & & & & & & & & & & & & & & &$	C/N-		529.5		53	1.3					1,3
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CeO ₂										
$\begin{array}{ c c c c c c } \hline Difference & 0.2 & 0.6 & \\ \hline Reason & Lattice oxygen & Oxygen vacancy & Surface adsorbed oxygen \\ \hline Oxygen & Oxygen & Oxygen & Oxygen \\ \hline Oxygen & Oxygen & Oxygen & Oxygen \\ \hline Oxygen & Oxygen & Oxygen & Oxygen \\ \hline Oxygen & Oxygen & Oxygen & Oxygen \\ \hline Oxygen & Oxygen & Oxygen & Oxygen & Oxygen \\ \hline Oxygen & Oxygen & Oxygen & Oxygen & Oxygen \\ \hline Oxygen & Oxygen & Oxygen & Oxygen & Oxygen & Oxygen \\ \hline Oxygen & Oxygen &$	MC-2		529.7		53	1.9			533	.2	
Reason Lattice oxygen Oxygen vacancy Surface adsorbed oxygen N Is N N C/N- CeO2 399.37 401.12 4 MC-2 399.40 401.15 4 Difference 0.03 0.03 0.03 Reason Doped N Interstitial N 1 C/N- CeO2 284.85 286.1 289.2 1.5 MC-2 284.95 286.29 288.9 1.5 Difference 0.1 0.19 0.3 6.7 MC-2 284.95 286.29 288.9 1.5 Difference 0.1 0.19 0.3 6.7 MC-2 1304.86 5 6.7 6.7 MC-2 1304.86 5 6.7 6.7 MIS 444.65 452.23 6.8 6.8 MIS 444.65 452.23 6.8 6.8 MC-2 444.42 452.01 10 6.8 6.8 6.7	Difference		0.2		0	.6					
N 1s oxygen C/N- CeO ₂ 399.37 401.12 4 MC-2 399.40 401.15 4 Difference 0.03 0.03 0.03 Reason Doped N Interstitial N 1.5 C/N- CeO ₂ 284.85 286.1 289.2 1.5 MC-2 284.95 286.29 288.9 1.5 Difference 0.1 0.19 0.3 6.7 MC-2 284.95 286.29 288.9 6.7 MG C-C C-N C-OH, O=C-O 6.7 MIS 1305.22 6.7 6.7 MC-2 1304.86 5 6.7 Difference 0.36 eV 6.8 6.8 Reason Mg*2 6.8 6.8 MC-2 444.65 452.23 6.8 MIS 444.65 452.01 6.8 Difference 0.22 3d _{3/2} 6.8 MIS 161.91 162.98	Reason	Latti	ce oxyge	n	Oxygen	vac	cancy		Surface a	dsorbed	
N Is C/N- CeO ₂ 399.37 401.12 4 MC-2 399.40 401.15 4 Difference 0.03 0.03 0.03 0.03 0.03 Reason Doped N Interstitial N 1.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>oxyg</td> <td>gen</td> <td></td>									oxyg	gen	
C/N- 399.37 401.12 401.12 MC-2 399.40 401.15 Difference 0.03 0.03 Reason Doped N Interstitial N Class Class 1.5 C/N- 284.85 286.1 289.2 1.5 COL Case 289.2 1.5 MC-2 284.95 286.29 288.9 286.29 288.9 Difference 0.1 0.19 0.3 6.7 MC-2 284.95 286.29 288.9 6.7 Difference 0.1 0.19 0.3 6.7 MIS 1305.22 6.7 6.7 MIS 1305.22 6.7 6.7 MIS 1304.86 0.36 6.7 Difference 0.33 0.22 6.8 MIS 4444.65 452.23 6.8 MIS 4444.65 452.23 6.8 MIS 161.91 162.98 6.7 MIS 16				0.07	N	15			401.10		1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	C/N-		39	19.37					401.12		
MC-2 339.40 401.13 Difference 0.03 0.03 Reason Doped N Interstitial N C 1s C C C/N- 284.85 286.1 289.2 MC-2 284.95 286.29 288.9 Difference 0.1 0.19 0.3 Reason C=C C-N C-OH, O=C-O MIS 1305.22 6.7 MC-2 1304.86 Difference Difference 0.36 eV 8 Reason Mg ⁺² 6.7 MIS 444.65 452.23 MIS 444.65 452.01 Difference 0.23 0.22 Reason Mg ⁺² 6.8 MC-2 444.42 452.01 Difference 0.23 0.22 Reason 3d _{3/2} 6.7 MIS 161.91 162.98 MIS 161.91 162.96 Difference 0.06 0.02 </td <td>MC^2</td> <td></td> <td>20</td> <td>0 40</td> <td></td> <td></td> <td></td> <td></td> <td>401.15</td> <td></td> <td></td>	MC^2		20	0 40					401.15		
Difference 0.03 0.03 Reason Doped N Interstitial N C 1s C 1s C/N- 284.85 286.1 289.2 1.5 MC-2 284.95 286.29 288.9 1.5 Difference 0.1 0.19 0.3 6.7 MC-2 284.95 286.29 288.9 6.7 Mise C-C C-OH, 0=C-O Mise 6.7 MIS 1305.22 6.7 6.7 MC-2 1304.86 6 6.7 Difference 0.36 eV 8 6.8 MIS 444.65 452.23 6.8 MC-2 444.42 452.01 6.8 Difference 0.23 0.22 6.8 MC-2 444.65 452.23 6.8 MC-2 161.91 162.98 6.7 MIS 161.91 162.98 6.7 MIS 161.91 162.96 6.7 MC-2	Difference		0.02		401.13						
C lasting Interstitian N C last C last C/N- 284.85 286.1 289.2 1,5 MC-2 284.95 286.29 288.9 1,5 Difference 0.1 0.19 0.3 1,5 Reason C=C C-N C-OH, O=C-O 6,7 MIS 1305.22 6,7 6,7 MC-2 1304.86 6,7 6,8 Difference 0.36 eV 6,8 6,8 MIS 444.65 452.23 6,8 MIS 444.65 452.01 6,8 Difference 0.23 0.22 6,8 MC-2 444.42 452.01 6,8 MIS 444.65 452.23 6,8 MC-2 444.42 3d_{3/2} 6,7 MIS 161.91 162.98 6,7 MIS 161.91 162.98 6,7 MIS 161.91 162.96 6,7 MIS 161.91 162.96 6,7	Difference	Doned N		U.05							
C/N- 284.85 286.1 289.2 $^{1.5}$ MC-2 284.95 286.29 288.9 $^{1.5}$ Difference 0.1 0.19 0.3 $^{1.5}$ Reason C=C C-N C-OH, O=C-O $^{6.7}$ MIS 1305.22 $^{6.7}$ $^{6.7}$ MIS 1305.22 $^{6.7}$ MC-2 1304.86 $^{6.7}$ Difference 0.36 eV $^{6.7}$ Reason Mg ⁺² $^{6.7}$ MIS 444.65 452.23 $^{6.8}$ MIS 444.42 452.01 $^{6.8}$ Difference 0.23 0.22 $^{6.7}$ MIS 161.91 162.98 $^{6.7}$ MIS 161.91 162.98 $^{6.7}$ MIS 161.85 162.96 $^{6.7}$ MIS 161.85 162.96 $^{6.7}$	Reason	C 1s									
CeO2 2001 1001	C/N-	/N- 284.85 286.1 289.2				1,5					
$\begin{tabular}{ c c c c c c } \hline MC-2 & 284.95 & 286.29 & 288.9 \\ \hline Difference & 0.1 & 0.19 & 0.3 \\ \hline Reason & C=C & C-N & C-OH, O=C-O \\ \hline & Mg 1s & & & & & \\ \hline MIS & 1305.22 & & 6.7 \\ \hline MC-2 & 1304.86 & & & & \\ \hline Difference & 0.36 eV & & & & & \\ \hline Reason & Mg^{+2} & & & & & \\ \hline MIS & 444.65 & 452.23 & & 6.8 \\ \hline MC-2 & 444.42 & 452.01 & & & \\ \hline Difference & 0.23 & 0.22 & & & \\ \hline Reason & 3d_{5/2} & 3d_{3/2} & & & \\ \hline MIS & 161.91 & 162.98 & & & \\ \hline MIS & 161.85 & 162.96 & & & \\ \hline MC-2 & 161.85 & 162.96 & & & \\ \hline Difference & 0.06 & 0.02 & & & \\ \hline \end{tabular}$	CeO ₂	201.05 200.1 209.2									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MC-2	2	284.95	286.29 288.9							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Difference		0.1		0.1	9			0.3		
Mg 1s 6,7 MIS 1305.22 6,7 MC-2 1304.86 6 Difference 0.36 eV 6 Reason Mg ⁺² 6 MIS 444.65 452.23 6,8 MC-2 444.42 452.01 6 Difference 0.23 0.22 6,8 MIS 444.62 3d _{3/2} 6,8 MC-2 444.42 452.01 6,8 Difference 0.23 0.22 6,8 MIS 161.91 162.98 6,7 MIS 161.91 162.98 6,7 MC-2 161.85 162.96 6,7 Difference 0.06 0.02 6,7	Reason		C=C		C-	Ν			C-OH, O	=C-O	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Μ	g 1	S				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MIS				13	05.2	22				6,7
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MC-2				13	04.8	86				
Reason Mg^{+2} In 3d MIS 444.65 452.23 6,8 MC-2 444.42 452.01 6,8 Difference 0.23 0.22 6,8 Reason 3d _{5/2} 3d _{3/2} 6,7 MIS 161.91 162.98 6,7 MIS 161.85 162.96 6,7 Difference 0.06 0.02 6,7	Difference				0.3	<u>36 e</u>	eV				
$\begin{tabular}{ c c c c c c } \hline In 3d \\ \hline MIS & 444.65 & 452.23 & 6.8 \\ \hline MC-2 & 444.42 & 452.01 & \\ \hline Difference & 0.23 & 0.22 & \\ \hline Reason & 3d_{5/2} & 3d_{3/2} & \\ \hline \hline S 2p & \\ \hline MIS & 161.91 & 162.98 & 6.7 & \\ \hline MC-2 & 161.85 & 162.96 & \\ \hline Difference & 0.06 & 0.02 & \\ \hline \end{tabular}$	Reason				<u>N</u>	$\sqrt{1g^{+2}}$	2				
MIS 444.65 452.23 6.8 MC-2 444.42 452.01 0.2 Difference 0.23 0.22 0.22 Reason $3d_{5/2}$ $3d_{3/2}$ 6.7 MIS 161.91 162.98 6.7 MC-2 161.85 162.96 6.7 Difference 0.06 0.02 6.7				4.68	lr	<u>1 3d</u>					6.9
MC-2 444.42 452.01 Difference 0.23 0.22 Reason $3d_{5/2}$ $3d_{3/2}$ MIS 161.91 162.98 $6,7$ MC-2 161.85 162.96 $6,7$ Difference 0.06 0.02 $6,7$	MIS		44	4.65					452.23		0,8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MC-2		44	4.42	452.01						
Keason 3d _{5/2} 3d _{3/2} S 2p MIS 161.91 162.98 6,7 MC-2 161.85 162.96 6,7 Difference 0.06 0.02 6,7	Difference		0	.23	0.22						
S 2p MIS 161.91 162.98 6,7 MC-2 161.85 162.96 6,7 Difference 0.06 0.02 6,7	Keason		3	a _{5/2}	<u> </u>	<u> </u>			3a _{3/2}		
MIS 101.91 102.98 0,7 MC-2 161.85 162.96 0.02 Difference 0.06 0.02 0,7	MIC		14	1.01	S	<u>2p</u>			162.09		6.7
Difference 0.06 0.02			10	1.91					102.98		
	Difference		10	06					0.02		
Reason $2n_{2/2}$ $2n_{1/2}$	Reason		<u> </u>	<u>nava</u>					$\frac{0.02}{2n_{1/2}}$		

Table S1. XPS binding energy comparison between C/N-CeO₂, MIS, and MC-2 photocatalyst.

5. Scavenger test:

The trapping test was conducted to identify the active species which are responsible for the photocatalytic generation of H_2O_2 reaction. Different scavengers such as p-benzoquinone (p-BQ), isopropyl alcohol (IPA), citric acid (CA), and dimethyl sulfoxide (DMSO) are used to verify the presence of reactive species: O_2^- , OH, h^+ , and e^- respectively. As we know that CA is used as holes (h^+) scavenger and DMSO as electrons (e^-) scavenger, the role of different reactive species towards photocatalytic H_2O_2 production was examined and displayed in Fig. S6. According to the trapping experiment test, a significant reduction in the production efficiency of H_2O_2 was observed while using DMSO, p-BQ as scavenging agent which demonstrates the principal role of e- and O_2^- for reduction of O_2 through the 2-electron single step and 1-electron two step processes. Moreover, the production of H_2O_2 moderately affected using IPA and CA as scavenging agent, displaying the minute role of OH and h^+ as a source of H_2O_2 production.

Fig. S9. Photocatalytic H₂O₂ production rate in presence of different scavengers.

Over the catalyst horizon, to confirm the presence of O_2^- which is the key reactive species towards H_2O_2 production and water reduction, NBT test was conducted. In this typical experiment, 10 mL of Nitro blue tetrazolium suspension (5*10⁵ M) with 0.01 g photocatalyst was exposed to sunlight for 1 h. After the illumination period, photocatalyst was separated by centrifugation and analyzed through UV-Vis DRS as shown in Fig. S9 (b). From the spectra it can be observed that, solar light exposed NBT shows decreased absorption intensity as compare to the neat NBT which prove the presence of O_2^- and hence it helps in photocatalytic production of H_2O_2 via O_2 reduction process.

Whereas, to confirm the presence of $^{\circ}OH$, terephthalic acid (TA) test was performed for the water oxidation reaction. In this experiment, TA reacts with OH^{-} to form

hydroxyterephthalic acid (HTA), which confirms the presence of 'OH in the solution. For this test, 5 mM TA was taken along with NaOH and the required amount of photocatalyst was added to the solution. The final solution was placed under sunlight for 30 min and after that, PL measurement was performed. The emission peak of composite at k = 425 nm is considered as the formation of HTA complex. Above result as shown in Fig. S7 (a) concluded the presence of 'OH in the reaction vessel which helped in O₂ evolution reaction via water splitting and moderately helps for H₂O₂ production by combining with another radical of its own.

Fig. S10. (a) TA and (b) NBT Test results for neat C/N-CeO₂, and MC-2

Table S2. BET s	surface area and	pore volume	of C/N-CeO ₂	, and MC-2	photocataly	ysts
			2	,		/

Photocatalyst	BET surface area (m ² /g)	m ² /g) Pore volume		ıme (Å)	(Å)	
C/N-CeO ₂	57.045	2.31	5.54	8.98	14.99	
MC-2	71.427	2.04	4.73	7.89	11.49	

Table S3. Respective band edge potential and optical bandgap values of C/N-CeO₂ and MIS.

Photocatalyst	E _{fb} vs Ag/AgCl	CB vs NHE (V)	VB vs NHE (V)	Bandgap
	(V)			(eV)
C/N-CeO ₂	-0.65	2.3	-0.56	2.86
MIS	-1.35	0.91	-1.26	2.17

Fig. S11. Comparative photocatalytic H_2 and H_2O_2 production rate using C/N-CeO₂/MIS and CeO₂/MIS composites.

Fig. S12. XRD spectra of MC-2 before, and after reaction.

Table S4. Respective H₂O₂ production rate of all prepared samples using different sacrificial agent.

Photocatalysts	H_2O_2 evolution rate (µmol/h/g) using different sacrificial agent				
	МеОН	EtOH	IPA		
C/N-CeO ₂	1183.6	992.8	1342.5		
MIS	389.1	312.4	545.7		
MC-1	1603.7	1478.9	2115.2		
MC-2	2067.6	1884.3	2520.4		
MC-3	1715.3	1567.3	2383.0		

Table S5. Comparison of photocatalytic H₂ evolution rate of different catalysts.

Photocatalyst	Light source	Sacrificial agent	H ₂ Production	Ref.
			rate (µmol/h)	

CeO ₂ /g-C ₃ N ₄	300 W Xenon	TEOA	203.6	9
	lamp	(triethanolamine)		
TiO ₂ /MoS ₂ /Graphene	350 W Xe lamp	C ₂ H ₅ OH	165.3	10
α -MnO ₂ @B/O-g-	125 W Hg lamp	CH ₃ OH	560.1	11
C_3N_4				
CeO ₂ @MoS ₂ /g-C ₃ N ₄	3 W UV-LEDs	Na ₂ SO ₃ and Na ₂ S	65.4	12
$1T/2H-MoS_2@CeO_2$	Visible spectrum	0.5M	73.1	13
		Na ₂ S/Na ₂ SO ₃		
C/N- CeO ₂ /MIS	125 W Hg lamp	CH ₃ OH	419.2	This
				work

Table S6. Comparison of photocatalytic O_2 evolution rate of different catalysts.

Photocatalyst	Light source	Sacrificial	O ₂ Production rate	Ref.
		agent	(µmol/h)	
CuO/CeO ₂	300 W Xe lamp	NaOHand	19.6	14
		$Na_2S_2O_8$		
α -MnO ₂ @B/O-g-	150 W Hg lamp	AgNO ₃	295.1	11
C_3N_4				
ZnCr ₂ O ₄ @ZnO/g-	Visible light ($\lambda \ge$	AgNO ₃	227.5	15
C_3N_4	400 nm)			
CeO ₂ /UNH (Ce)	125 W Hg lamp	FeCl ₃	370.2	1
C/N- CeO ₂ /MIS	125 W Hg lamp	AgNO ₃	210.1	This
				work

Table S7. Comparison of photocatalytic H_2O_2 production rate of different catalysts.

Photocatalyst	Light source	Sacrificial	H ₂ O ₂ Production	Ref.
		agent	rate (µmol/g/h)	
CeO ₂ / SnIn ₄ S ₈	Visible light	No sacrificial	33.6	16
		agent		

C/N-	250 W Hg lamp	Ethanol	2495.1 ± 62.3	5
ZnO@NixPy				
MgIn ₂ S ₄ @BCN	250 W Hg lamp	Ethanol	2175	7
TiO ₂ @MXene/B-	250 W Hg lamp	Ethanol	1480.1	17
g-C ₃ N ₄				
Fe ₂ O ₃ /BCN	250 W Hg lamp	IPA	729	18
Mn ₃ O ₄ /	Xe lamp $>$ 420 nm	Ethanol	1020	19
Co ₉ S ₈				
C/N- CeO ₂ /MIS	250 W Hg lamp	IPA	2520.4	This
				work
g-C ₃ N ₄ Fe ₂ O ₃ /BCN Mn ₃ O ₄ / Co ₉ S ₈ C/N- CeO ₂ /MIS	250 W Hg lamp Xe lamp > 420 nm 250 W Hg lamp	IPA Ethanol IPA	729 1020 2520.4	Tw

Table S8. Details of Chemicals and Instruments used.

SI No.	Chemicals/ Instruments	Manufacturer	City and Country
1	Cerium chloride,	Sigma-Aldrich	Burlington, United states
	2-Amino-1,4-benzeen		
	dicarboxylic acid, Magnesium		
	nitrate, Indium nitrate,		
	Thioacetamide		
2	Methanol, and N, N-	Merck	Darmstadt, Germany
	Dimethyl formamide		
3	X-Ray Diffraction (XRD)	Rigaku-Ultima IV	Tokyo, Japan
4	UV–Visible (UV–Vis)	JASCO V-750	Halifax, Canada
	diffuse reflectance spectra		
	(DRS)		
5	Fourier Transform	JASCO FTIR-4600	Halifax, Canada
	Infrared spectrometer (FTIR)		
6	Photoluminescence	JASCO FP-8300	Halifax, Canada
	Spectrofluorometer (PL)	spectrofluorometer	
7	Raman spectrometer	RENISHAW InVia	Wotton-under-Edge,
		Raman spectrometer	England
8	Electrochemical	IVIUMnSTAT	Eindhoven, Netherland
	analyser		

9	Transmission electron	TEM,JEOL-2100	Tokyo, Japan
	microscopy (TEM)		
10	Field Emission Scanning	Zeiss, Gemini-300	Jena, Germany
	Electron Microscope (FESEM)		
11	Electron paramagnetic	Bruker, ELEXSYS	Billerica, United states
	resonance spectrometer (EPR)		
12	Zeta potential	Zetasizer Nano ZS	Malvern, United Kingdom

References:

- S. Mansingh, S. Subudhi, S. Sultana, G. Swain and K. Parida, ACS Appl. Nano Mater., 2021, 4, 9635–9652.
- 2 T. Tang, X. Jin, X. Tao, L. Huang and S. Shang, J. Alloys Compd., 2022, 895, 162452.
- S. P. Tripathy, S. Subudhi, A. Ray, P. Behera, A. Bhaumik and K. Parida, *Langmuir*, 2022, **38**, 1766–1780.
- 4 X. Cheng, X. Yu and Z. Xing, *Appl. Surf. Sci.*, 2012, **258**, 3244–3248.
- 5 A. Ray, S. Subudhi, S. P. Tripathy, L. Acharya and K. Parida, *Adv. Mater. Interfaces*, , DOI:10.1002/admi.202201440.
- 6 G. Swain, S. Sultana and K. Parida, ACS Sustain. Chem. Eng., , DOI:10.1021/acssuschemeng.9b07821.
- L. Acharya, G. Swain, B. P. Mishra, R. Acharya and K. Parida, ACS Appl. Energy Mater., 2022, 5, 2838–2852.
- 8 S. P. Tripathy, S. Subudhi, A. Ray, P. Behera, G. Swain, M. Chakraborty and K. Parida, *Langmuir*, 2023, **39**, 7294–7306.
- 9 S. Zhang, J. Guo, W. Zhang, H. Gao, J. Huang, G. Chen and X. Xu, ACS Sustain. Chem. Eng., 2021, 9, 11479–11492.
- H. H. Do, D. L. T. Nguyen, X. C. Nguyen, T. H. Le, T. P. Nguyen, Q. T. Trinh, S. H.
 Ahn, D. V. N. Vo, S. Y. Kim and Q. Van Le, *Arab. J. Chem.*, 2020, 13, 3653–3671.
- B. P. Mishra, L. Acharya, S. Subudhi and K. Parida, *Int. J. Hydrogen Energy*, 2022, 47, 32107–32120.
- C. Zhu, Y. Wang, Z. Jiang, F. Xu, Q. Xian, C. Sun, Q. Tong, W. Zou, X. Duan and S. Wang, *Appl. Catal. B Environ.*, 2019, 259, 118072.

- C. Zhu, Q. Xian, Q. He, C. Chen, W. Zou, C. Sun, S. Wang and X. Duan, ACS Appl. Mater. Interfaces, 2021, 13, 35818–35827.
- V. I. Markoulaki, I. T. Papadas, I. Kornarakis and G. S. Armatas, *Nanomaterials*, 2015, 5, 1971–1984.
- S. Patnaik, D. P. Sahoo, L. Mohapatra, S. Martha and K. Parida, *Energy Technol.*, 2017, 5, 1687–1701.
- 16 Y. Xiao, Y. Tao, Y. Jiang, J. Wang, W. Zhang, Y. Liu, J. Zhang, X. Wu and Z. Liu, Sep. Purif. Technol., 2023, 304, 122385.
- 17 B. P. Mishra, L. Biswal, S. Das, L. Acharya and K. Parida, *Langmuir*, , DOI:10.1021/acs.langmuir.2c02315.
- 18 Z. Lu, X. Zhao, Z. Zhu, Y. Yan, W. Shi, H. Dong, Z. Ma, N. Gao, Y. Wang and H. Huang, *Chem. A Eur. J.*, 2015, **21**, 18528–18533.
- 19 H. Zhang and X. Bai, Appl. Catal. B Environ., 2021, 298, 120516.