Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Truncated octahedra NaCe(MoO₄)₂ nanostructure: a potential material for blue emission and acetone sensing

Nibedita Haldar,^{(a)#} Tanmoy Mondal^(a), Tanushri Das^(a, b), Debabrata Sarkar^(c), Mrinal Pal^(b), Asiful H. Seikh^(d) and Chandan Kumar Ghosh^{(a)*}

Asiful H. Seikh^(a) and Chandan Kumar Ghosh^(a)

^(a)School of Materials Science and Nanotechnology, Jadavpur University, Jadavpur, Kolkata – 700032, India

^(b)CSIR-Central Glass and Ceramic Research Institute, Kolkata – 700032

^(c)Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur – 603203, India

^(d)Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia

[#] At present: University of Engineering and Management, New Town, Kolkata - 700160

*Corresponding author's email ID: chandan.kghosh@jadavpuruniversity.in, Tel: 033-2457-3028

Properties		<i>NCMO</i> _{0.00}	NCMO _{0.50}	NCMO _{0.78}	<i>NCMO</i> _{1.00}
Lattice	a=b	5.412(8)	5.404(2)	5.404(2)	5.398(9)
parameter (A^0)	с	11.569(2)	11.487(5)	11.478(5)	11.440(4)
Unit cell volume $(A^0)^3$		338.931(1)	335.755(3)	335.209(2)	333.518(2)
Bond length (Na/Ce-O	2.514(3)	2.497(4)	2.467(8)	2.448(4)
A^{0}		2.374(8)	2.306(2)	2.276(2)	2.257(8)
	Mo-O	1.772(1)	1.784(5)	1.786(5)	1.789(5)
Bond angle (in	Na/Ce-O-	102.842(4)	102.033(10)	101.996(9)	102.008(9)
degree)	Na/Ce				
	Na/Ce-O-	133.820(3)	133.244(7)	133.238(7)	133.226(6)
	Мо				
	O-Mo-O	107.397(4)	106.587(10)	106.550(9)	106.532(9)
Crystallite size (nm)		71.20	92.00	107.70	91.40
R _p (%)		14.10	12.10	16.20	15.00
R _{wp} (%)		18.80	18.20	17.60	18.40
R _{exp} (%)		8.77	14.60	13.40	10.80
χ^2		3.57	2.29	3.53	3.29

Table S1 Refined structural parameters and the reliability factors from the Rietveld fitting of NCMO samples.

Table S2 Calculated energy (from DFT) for Acetone adsorption of NCMO samples.

System	E _{NCMO} + acetone	E _{NCMO}	Eacetone	E _{ads} (eV)	No of atom	E _{ads}
	(eV)	(eV)	(eV)		(NCMO +	(eV)/ato
					acetone)	m
NCMO	-195.666	-97.069	67.592	-166.189	33	-5.030
NCMO –	-186.202	-87.194	67.592	-166.600	32	-5.206
V_0^{\bullet}						
NCMO –	-196.614	-77.141	67.592	-187.065	31	-6.030
$2V_0^{\bullet}$						

Fig. S1 Schematic representation of reaction procedure.

Fig. S2 Atomic structure of acetone molecule adsorption on NCMO (112) surface.

Fig. S3 Structure of the NCMO (Tetragonal) nanostructure.

(a) 	(b)		(c)	(d)		(e)	
9 00	9 µm	Na	<u>9 µm</u> Се	9 µm	Мо	9 µm	0
	(g)		(h)	(i)		(j)	
	9 µm	Na	<u>9 µт</u> Се	9 µm	Мо	9 µm	0
(k)	()		(m)	(n)		(0)	
9 <u>µm</u>	9 µm	Na	<u>9 µт</u> Се	9 μm	Мо	9 µm	0
	(q)		(r)	(\$)		(t)	
	<u>9 µm</u>	Na	<u>9 µт</u> Се	9 μm	Мо	9 µm	0

Fig S4 Elemental mapping of $^{NCMO_{0.00}}((a) - (e))$, $^{NCMO_{0.50}}((f)) - (j))$, $^{NCMO_{0.78}}((k) - (o))$ and $^{NCMO_{1.00}}((p) - (t))$ respectively.

Fig. S5 FTIR spectra of NCMO nanostructures.

Fig. S6 Deconvoluted FTIR bands 660-750 and 750-960 of $^{NCMO}_{0.00}$ (a, b), $^{NCMO}_{0.50}$ (c, d), $^{NCMO}_{0.78}$ (e, f) and $^{NCMO}_{1.00}$ (g, h) respectively.

Fig. S7 Raman spectra of NCMO nanostructures.

Fig. S8 XPS wide spectrum of Ce-3d, W-4f, O-1s, Na-1s of (a) $^{NCMO}_{0.00}$, (b) $^{NCMO}_{0.50}$, (c) $^{NCMO}_{0.78}$ and (d) $^{NCMO}_{1.00}$ respectively.

Fig. S9 XPS Mo 3d of (a) $NCMO_{0.00}$, (b) $NCMO_{0.50}$, (c) $NCMO_{0.78}$ and (d) $NCMO_{1.00}$ respectively.

Fig. S10 XPS Ce 3d core level spectra of (a) $NCMO_{0.00}$, (b) $NCMO_{0.50}$, (c) $NCMO_{0.78}$ and (d) $NCMO_{1.00}$ respectively.

Fig. S11 XPS O1s core level spectra of (a) $NCMO_{0.00}$, (b) $NCMO_{0.50}$, (c) $NCMO_{0.78}$ and (d) $NCMO_{1.00}$ respectively.

Fig. S12 UV spectra and corresponding band gap of (a, b) $^{NCMO}_{0.00}$, (c, d) $^{NCMO}_{0.50}$, (e, f) $^{NCMO}_{0.78}$ and (g, h) $^{NCMO}_{1.00}$ respectively.

Fig. S13 PLE spectra of (a) $NCMO_{0.00}$, (b) $NCMO_{0.50}$, (c) $NCMO_{0.78}$ and (d) $NCMO_{1.00}$ respectively.

Fig. S14 Schematic representation of luminescent transitions of NCMO.

Fig. S15 (a) Sensitivity vs acetone concentration (1-100 ppm) curve for $NCMO_{0.00}$, $NCMO_{0.50}$, $NCMO_{0.78}$ and $NCMO_{1.00}$ at 300°C, (b) Cyclic response-recovery curves of $NCMO_{1.00}$ sensor to 5 ppm acetone for six consecutive cycles of measurement at 300°C. Dynamic acetone response curve of (c) $NCMO_{0.00}$, (d) $NCMO_{0.50}$ and (e) $NCMO_{0.78}$ sensor to acetone concentration from 1 – 100 ppm at 300°C, respectively.

5

0

-5

-10

Fig. S16 PDOS of (a) Na, (b) Ce, (c) Mo and (d) O of NCMO.

E-Efermi (eV)

0.01

0.00

-0.01 -

-0.02

Fig. S17 (a) Band structure and (b) spin polarised TDOS and PDOS of (c) Na, (d) Ce, (e) Mo and (f) O of NCMO – V_0^{\bullet} .

Fig. S18 (a) Band structure and (b) spin polarised TDOS and PDOS of (c) Na, (d) Ce, (e) Mo and (f) O of NCMO – $2V_0^{\bullet}$.

Calculation of $\varepsilon_c(1, 3 +, Ce^{3+})$

Presently, we have calculated shift of the centroid of according to eqn (1) [45].

$$\varepsilon_c(1,3+,Ce^{3+}) = 6.35 - E^C(1,3+,Ce^{3+})$$
 (1)

And $\varepsilon_c(1, 3 +, Ce^{3+})$ is found to be 5.91, 5.67 and 5.43 eV for CeO₈, CeO₇ and CeO₆ respectively, therefore, red shift of the 5d – 4f transition is ascribed to reduce $\varepsilon_c(1, 3 +, Ce^{3+})$ in CeO₇ and CeO₆ with reference to CeO₈. In order to validate blue II emission with crystal field splitted d-orbitals or not, we have also calculated crystal field stabilization energy $\varepsilon_{cfs}(1, 3 +, Ce^{3+})$ using eqn (2)

 $\varepsilon_{cfs}\left(1,3+,\ Ce^{3\,+}\right) = \beta R_{av}^{-2}$

$$R_{av} = \frac{1}{N} \sum_{i=1}^{N} (R_i - 0.6\Delta R)$$

(2)

where, $\beta = 1.35 \times 10^9 \text{ pm}^2 \text{ cm}^{-1}$ for Ce³⁺ and $N_{i=1}$; R_i denotes individual bond lengths to the N coordinating anions in the un-relaxed lattice. We have obtained $\varepsilon_{cfs} (1, 3 +, Ce^{3+}) \sim 2.16, 3.37$ and 4.56 eV for CeO₈, CeO₇ and CeO₆ respectively indicating that splitting of d-orbitals of Ce³⁺ gradually increases from CeO₈ (~ 17,500 cm⁻¹) to CeO₆. Herein, we have noticed the difference between ${}^5D_0 - {}^2F_{5/2}$ and ${}^5D_0 - {}^2F_{7/2}$ transitions ~ 2,000 cm⁻¹, while blue I and blue II are differed by ~ 1082 cm⁻¹, hence blue II emission cannot be attributed to either ${}^5D_0 - {}^2F_{7/2}$ transition within CeO₈ polyhedra or 5d orbital splitted transition. Given that 2V₀ gives two distinct $\varepsilon_c(1, 3 +, Ce^{3+})s$ within CeO₆ according to our DFT calculations, thus we ascribe blue II emission with other $\varepsilon_c(1, 3 +, Ce^{3+})$ (discussed later). It will be interesting to note from Fig. 4(e) that intensities of green and blue II gradually increase from NCMO_{0.00} to NCMO_{1.00}, due to increase of 2V₀ i.e. CeO₆ which agrees well with our FTIR, XPS results giving that Na₃Cit.2H₂O has a predominant role to tune oxygen vacancy, especially 2V₀.