Tuning the charge transport properties of non-planar zinc(II) complexes of azadipyrromethene using solubilizing groups

Supporting Information

Lexi R. Knight¹, Jayvic C. Jimenez², Quynh Tran¹, Muyuan Zhao¹, Madison H. Pugh¹, Christina D. Brancel¹, Honghu Zhang³, Ruipeng Li³, Yi Yuan⁵, Yuning Li⁵, Lei Zhu⁴, Geneviève Sauvé^{1,*}

¹Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA

²Lawrence Livermore National Laboratory, Livermore, California 94550, USA

³National Synchrotron Light Source II, Brookhaven National Laboratory, Upon, New York 11973, USA

⁴Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA

⁵Department of Chemical Engineering and Waterloo Institute for Technology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, Canada N2L 3G1

Table of Contents

Crystal Packing and Calculated Overlap Integrals	1
Grazing-Incident Wide-Angle X-ray Diffraction	3
Diode Mobility	4
Organic Thin-Film Transistor Mobility	6

Crystal Packing and Calculated Overlap Integrals

Zn(phexWS3) ₂	Pair	Direction from red	Vh ⁺ (meV)	Ve ⁻ (meV)
Radia		+Y, -Z	-1.90	0.44
		+Y	6.36	-1.64
		-Z	-2.13	-0.44
Y Z		-X	-0.05	-0.56
X		+X, +Y, +Z,	0.37	-0.40

Table S1: Crystal packing, pairs, directions from red-colored compound and calculated absolute hole and electron overlap integrals for Zn(phexWS3)₂.

Zn(dhexWS3) ₂	Pair	Directions from red	Vh ⁺ (meV)	Ve ⁻ (meV)
		-Y, -Z	-0.48	1.14
		-X	3.88	-3.18
Y Z		-X, -Z	-0.43	-0.20
X		-Y	1.70	1.78

Zn(pOhexWS3)₂	Pair	Directions from Red	Vh ⁺ (meV)	Ve ⁻ (meV)
		+X, -Z	-0.42	-0.06
		+X, +Y, -Z	1.45	-0.86
		-X, -Z	3.79	-7.66
Y Z		-Y, -Z	-0.34	-1.21
X		-X	-0.44	-0.47

Table S3: Crystal packing, pairs, directions from red-colored compound and calculated absolutehole and electron overlap integrals for $Zn(pOhexWS3)_2$.

Zn(dOhexWS3) ₂	Pair	Direction from red	Vh ⁺ (meV)	Ve ⁻ (meV)
		-X, +Y	-0.71	-0.16
		-X, -Y	17.94	-7.99
Y		-Y, +Z	-0.55	0.65
X	×	+X, -Y	-0.71	-0.16

Table S4: Crystal packing, pairs, directions from red-colored compound and calculated absolute hole and electron overlap integrals for Zn(dOhexWS3)₂.

		In-pla	ne		Out-of-	Plane
Compound	FWHM	β	Crystallite size	FWHM	β	Crystallite Size
Compound	(°, deg)	(°, rad)	(nm)	(°, deg)	(°, rad)	(nm)
Zn(phexWS3) ₂ *						
Zn(dhexWS3) ₂ *						
Zn(pOhexWS3) ₂	0.2205	0.2347	20.2	0.2407	0.2562	18.5
Zn(dOhexWS3) ₂	0.0648	0.0690	65.7	0.2749	0.2926	16.2

Grazing-Incident Wide-Angle X-ray Diffraction

Table S5: Summary of crystallite properties in annealed films. Hexyloxy substituted molecules

 were amorphous in film, therefore no measurements were taken.

Figure S1: Powder diffraction patterns for (a) Zn(phexWS3)₂, (b) Zn(dhexWS3)₂, (c) Zn(pOhexWS3)₂, and (d) Zn(dOhexWS3)₂.

Figure S2: Electron mobility of $Zn(phexWS3)_2$ (a) plot of the double logarithm relationship between J and absolute V. The data highlighted in red shows the SCLC region which fits to the Mott-Gurney law. (b) J^{1/2} characteristics shown versus V for electron mobility.

Figure S3: Electron mobility of $Zn(dhexWS3)_2$ (a) plot of the double logarithm relationship between J and absolute V. The data highlighted in red shows the SCLC region which fits to the Mott-Gurney law. (b) $J^{1/2}$ characteristics shown versus V for electron mobility.

Figure S4: Electron mobility of $Zn(pOhexWS3)_2$ (a) plot of the double logarithm relationship between J and absolute V. The data highlighted in red shows the SCLC region which fits to the Mott-Gurney law. (b) $J^{1/2}$ characteristics shown versus V for electron mobility.

Figure S5: Electron mobility of $Zn(dOhexWS3)_2$ (a) plot of the double logarithm relationship between J and absolute V. The data highlighted in red shows the SCLC region which fits to the Mott-Gurney law. (b) $J^{1/2}$ characteristics shown versus V for electron mobility.

Figure S6: Electron mobility of $Zn(WS3)_2$ (a) plot of the double logarithm relationship between J and absolute V. The data highlighted in red shows the SCLC region which fits to the Mott-Gurney law. (b) $J^{1/2}$ characteristics shown versus V for electron mobility.

	Electron Mobility $(cm^2V^{-1}s^{-1})$			
complex	Room Temperature	50°C	100°C	
Zn(phexWS3) ₂	$2\pm1 imes10^{-4}$	$9\pm6\times10^{-5}$	$1\pm0.8\times10^{-4}$	
Zn(dhexWS3) ₂	$7\pm2 imes10^{-5}$	$4\pm0.6\times10^{-5}$	$4\pm0.7\times10^{-5}$	
Zn(pOhexWS3) ₂	$3\pm4 imes10^{-6}$	$1 \pm 0.1 \times 10^{-6}$	$6\pm3\times10^{-7}$	
Zn(dOhexWS3) ₂	$1\pm2 imes10^{-5}$	$2\pm0.2\times10^{-4}$	$4 \pm 4 \times 10^{-5}$	
Zn(WS3) ₂	_	_	_	

Organic Thin-Film Transistor Mobility

Table S6: Summary of average electron mobility in OTFTs at varying annealing temperatures

	Hole Mobility $(cm^2V^{-1}s^{-1})$			
complex	Room Temperature	50°C	100°C	
Zn(phexWS3) ₂	$5\pm3 imes10^{-5}$	$3\pm3 imes10^{-5}$	$2\pm2\times10^{-5}$	

Zn(dhexWS3) ₂	$2\pm0.6\times10^{-5}$	$1\pm0.3\times10^{-5}$	$2\pm0.2\times10^{-5}$
Zn(pOhexWS3) ₂	$1\pm0.5\times10^{-5}$	$9\pm2\times10^{-6}$	$8\pm3 imes10^{-5}$
Zn(dOhexWS3) ₂	$1 \pm 1 \times 10^{-5}$	$4\pm2\times10^{-6}$	$5\pm5 imes10^{-6}$
Zn(WS3) ₂	_	_	_

Table S7: Summary of average hole mobility in OTFTs at varying annealing temperatures

Figure S7: The (a) power transfer drain voltage ($V_{DS} = -100$ V) and (b) power output characteristics of prepared OTFT devices of p-type Zn(phexWS3)₂.

Figure S8: The (a) power transfer drain voltage ($V_{DS} = 100 \text{ V}$) and (b) power output characteristics of prepared OTFT devices of n-type Zn(phexWS3)₂.

Figure S9: The (a) power transfer drain voltage ($V_{DS} = -100$ V) and (b) power output characteristics of prepared OTFT devices of p-type Zn(dhexWS3)₂.

Figure S10: The (a) power transfer drain voltage ($V_{DS} = 100$ V) and (b) power output characteristics of prepared OTFT devices of n-type Zn(dhexWS3)₂.

Figure S11: The (a) power transfer drain voltage ($V_{DS} = -100$ V) and (b) power output characteristics of prepared OTFT devices of p-type Zn(pOhexWS3)₂.

Figure S12: The (a) power transfer drain voltage ($V_{DS} = 100$ V) and (b) power output characteristics of prepared OTFT devices of n-type Zn(pOhexWS3)₂.

Figure S13: The (a) power transfer drain voltage ($V_{DS} = -100$ V) and (b) power output characteristics of prepared OTFT devices of p-type Zn(dOhexWS3)₂.

Figure S14: The (a) power transfer drain voltage ($V_{DS} = 100$ V) and (b) power output characteristics of prepared OTFT devices of n-type Zn(dOhexWS3)₂.