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Crystal Packing and Calculated Overlap Integrals 
 

 

Table S1: Crystal packing, pairs, directions from red-colored compound and calculated absolute 

hole and electron overlap integrals for Zn(phexWS3)2. 

 

 

Table S2: Crystal packing, pairs, directions from red-colored compound and calculated absolute 

hole and electron overlap integrals for Zn(dhexWS3)2. 
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Table S3: Crystal packing, pairs, directions from red-colored compound and calculated absolute 

hole and electron overlap integrals for Zn(pOhexWS3)2.  
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Table S4: Crystal packing, pairs, directions from red-colored compound and calculated absolute 

hole and electron overlap integrals for Zn(dOhexWS3)2.  

 

Grazing-Incident Wide-Angle X-ray Diffraction  
 

 
In-plane Out-of-Plane 

Compound 
FWHM 

(°, deg) 

β  

(°, rad) 

Crystallite size 

(nm) 

FWHM 

(°, deg) 

β  

(°, rad) 

Crystallite Size 

(nm) 

Zn(phexWS3)
2

*
 ---- ---- ---- ---- ---- ---- 

Zn(dhexWS3)
2

*
 ---- ---- ---- ---- ---- --- 

Zn(pOhexWS3)
2
 0.2205 0.2347 20.2 0.2407 0.2562 18.5 

Zn(dOhexWS3)
2
 0.0648 0.0690 65.7 0.2749 0.2926 16.2 

Table S5: Summary of crystallite properties in annealed films. Hexyloxy substituted molecules 

were amorphous in film, therefore no measurements were taken.  

 



4 

 

Figure S1: Powder diffraction patterns for (a) Zn(phexWS3)2, (b) Zn(dhexWS3)2, (c) 

Zn(pOhexWS3)2, and (d) Zn(dOhexWS3)2.  

Diode Mobility  

 

Figure S2: Electron mobility of Zn(phexWS3)2 (a) plot of the double logarithm relationship 

between J and absolute V. The data highlighted in red shows the SCLC region which fits to the 

Mott-Gurney law. (b) J1/2 characteristics shown versus V for electron mobility.  

 

Figure S3: Electron mobility of Zn(dhexWS3)2 (a) plot of the double logarithm relationship 

between J and absolute V. The data highlighted in red shows the SCLC region which fits to the 

Mott-Gurney law. (b) J1/2 characteristics shown versus V for electron mobility.  
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Figure S4: Electron mobility of Zn(pOhexWS3)2 (a) plot of the double logarithm relationship 

between J and absolute V. The data highlighted in red shows the SCLC region which fits to the 

Mott-Gurney law. (b) J1/2 characteristics shown versus V for electron mobility.  

 

Figure S5: Electron mobility of Zn(dOhexWS3)2 (a) plot of the double logarithm relationship 

between J and absolute V. The data highlighted in red shows the SCLC region which fits to the 

Mott-Gurney law. (b) J1/2 characteristics shown versus V for electron mobility.  
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Figure S6: Electron mobility of Zn(WS3)2 (a) plot of the double logarithm relationship between J 

and absolute V. The data highlighted in red shows the SCLC region which fits to the Mott-Gurney 

law. (b) J1/2 characteristics shown versus V for electron mobility.  

Organic Thin-Film Transistor Mobility  
 

 Electron Mobility (cm2V −1s−1) 

complex Room Temperature 50◦C 100◦C 

Zn(phexWS3)2 2 ± 1 × 10−4 9 ± 6 × 10−5 1 ± 0.8 × 10−4 

Zn(dhexWS3)2 7 ± 2 × 10−5 4 ± 0.6 × 10−5 4 ± 0.7 × 10−5 

Zn(pOhexWS3)2 3 ± 4 × 10−6 1 ± 0.1 × 10−6 6 ± 3 × 10−7 

Zn(dOhexWS3)2 1 ± 2 × 10−5 2 ± 0.2 × 10−4 4 ± 4 × 10−5 

Zn(WS3)2 – – – 

Table S6: Summary of average electron mobility in OTFTs at varying annealing temperatures  

 Hole Mobility (cm2V −1s−1) 

complex Room Temperature 50◦C 100◦C 

Zn(phexWS3)2 5 ± 3 × 10−5 3 ± 3 × 10−5 2 ± 2 × 10−5 
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Zn(dhexWS3)2 2 ± 0.6 × 10−5 1 ± 0.3 × 10−5 2 ± 0.2 × 10−5 

Zn(pOhexWS3)2 1 ± 0.5 × 10−5 9 ± 2 × 10−6 8 ± 3 × 10−5 

Zn(dOhexWS3)2 1 ± 1 × 10−5 4 ± 2 × 10−6 5 ± 5 × 10−6 

Zn(WS3)2 – – – 

Table S7: Summary of average hole mobility in OTFTs at varying annealing temperatures  

 

 

Figure S7: The (a) power transfer drain voltage (VDS = -100 V) and (b) power output 

characteristics of prepared OTFT devices of p-type Zn(phexWS3)2.  

 

Figure S8: The (a) power transfer drain voltage (VDS = 100 V) and (b) power output characteristics 

of prepared OTFT devices of n-type Zn(phexWS3)2.  



8 

 

 

Figure S9: The (a) power transfer drain voltage (VDS = -100 V)  and (b) power output 

characteristics of prepared OTFT devices of p-type Zn(dhexWS3)2. 

 

Figure S10: The (a) power transfer drain voltage (VDS = 100 V)  and (b) power output 

characteristics of prepared OTFT devices of n-type Zn(dhexWS3)2.  
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Figure S11: The (a) power transfer drain voltage (VDS = -100 V)  and (b) power output 

characteristics of prepared OTFT devices of p-type Zn(pOhexWS3)2.  

 

Figure S12: The (a) power transfer drain voltage (VDS = 100 V) and (b) power output 

characteristics of prepared OTFT devices of n-type Zn(pOhexWS3)2.  

 

Figure S13: The (a) power transfer drain voltage (VDS = -100 V)  and (b) power output 

characteristics of prepared OTFT devices of p-type Zn(dOhexWS3)2. 
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Figure S14: The (a) power transfer drain voltage (VDS = 100 V) and (b) power output 

characteristics of prepared OTFT devices of n-type Zn(dOhexWS3)2.  


