Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

# Materials Advances

## **ARTICLE TYPE**

# Supporting Information

# Soft, ternary, X- and gamma-ray shielding materials: paraffin-based iron-encapsulated carbon nanotube nanocomposites <sup>†</sup>

Jolanta Sobczak,<sup>a</sup> Adrian Truszkiewicz,<sup>b</sup> Krzysztof Cwynar,<sup>c</sup> Szymon Ruczka,<sup>d,e</sup> Anna Kolanowska,<sup>c,d</sup> Rafał G. Jędrysiak,<sup>d,e</sup> Sylwia Waśkiewicz,<sup>f</sup> Marzena Dzida,<sup>c</sup> Sławomir Boncel,<sup>\*d,e</sup> and Gaweł Żyła,<sup>\*g</sup>

#### Abstract

In the field of radiological protection, there is a growing interest in nano- and microcomposites due to their unique physicochemical properties, flexibility in the component selection (the base ingredient as well as the fillers), and lower toxicity in comparison to the lead-(Pb-based) ones. In this study, we manufactured paraffin-based composites with different concentrations of iron-encapsulated multi-walled carbon nanotubes (Fe@MWCNTs) (10 and 20 wt.%), which were prone to shape change at the average room temperature. Long Fe@MWCNT arrays were synthesized by catalytic chemical vapor deposition (c-CVD) using the saturated (at 293.15 K) toluene solution of ferrocene (FeCp<sub>2</sub>) (9.6 wt.%) as a feedstock toward the highest efficiency of a complete Fe-encapsulation. The experimental data indicate that the shielding properties against gamma- and X-ray radiation are influenced by the filler concentration – the higher CNT content resulted in a greater ability to attenuate incident ionizing radiation. Finally, Fe@MWCNT-paraffin composites demonstrated corrosion resistance, as they did not react with 1 M aqueous solutions of NaCl, NaOH, and HCl.

<sup>&</sup>lt;sup>a</sup> Doctoral School of the Rzeszów University of Technology, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

<sup>&</sup>lt;sup>b</sup> Department of Photomedicine and Physical Chemistry, Medical College of University of Rzeszów, University of Rzeszów, Warzywna 1A Street, 35-310 Rzeszów, Poland.

<sup>&</sup>lt;sup>c</sup> Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland

<sup>&</sup>lt;sup>d</sup> Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; E-mail: Slawomir.Boncel@polsl.pl.

<sup>&</sup>lt;sup>e</sup> Centre for Organic and Nanohybrid Electronics (CONE), Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland; E-mail: Slawomir.Boncel@polsl.pl.

<sup>&</sup>lt;sup>f</sup> Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, ks. Marcina Strzody 9, 44-100 Gliwice, Poland.

<sup>&</sup>lt;sup>g</sup> Department of Physics and Medical Engineering, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland; E-mail: gzyla@prz.edu.pl



Fig. S1: Optical micrographs of: Fe@MWCNTs (a), neat paraffin (b), Paraffin + 10 wt.% Fe@MWCNT (c), and Paraffin + 20 wt.% Fe@MWCNT (d) composites



Fig. S2: EDX spectra of Fe@MWCNTs (a), neat paraffin (b), Paraffin + 10 wt.% Fe@MWCNT (c), and Paraffin + 20 wt.% Fe@MWCNT (d) composites. Field of view: 26.9  $\mu$ m, Mode: 15 kV – Point, Detector: backscattered electron detector.

## Rheological properties

| Table S1: | Storage modulu    | is and loss | modulus for pu | re paraffin | samples and | composites | with Fe@MW | /CNTs additio | n in a | function c | of |
|-----------|-------------------|-------------|----------------|-------------|-------------|------------|------------|---------------|--------|------------|----|
| strain, f | = 1 Hz, $T = 309$ | .75 K       |                |             |             |            |            |               |        |            |    |

| <b>C</b> t | Para      | ffin     | Paraffin + 10 w | rt% Fe@MWCNTs     | Paraffin + 20 w | rt% Fe@MWCNTs     |
|------------|-----------|----------|-----------------|-------------------|-----------------|-------------------|
| Strain     | G'        | G''      | G'              | $\widetilde{G''}$ | G'              | $\widetilde{G''}$ |
| [-]        | [Pa]      | [Pa]     | [Pa]            | [Pa]              | [Pa]            | [Pa]              |
| 0,001006   | 110900    | 42823,33 | 675666,67       | 256600            | 709933,33       | 258266,67         |
| 0,001273   | 111233,33 | 42593,33 | 682166,67       | 251666,67         | 721333,33       | 263466,67         |
| 0,001615   | 112466,67 | 42486,67 | 683933,33       | 255700            | 749033,33       | 268466,67         |
| 0,00204    | 113633,33 | 42420    | 690900          | 255133,33         | 764000          | 271833,33         |
| 0,002591   | 113600    | 42876,67 | 690600          | 255700            | 769966,67       | 270600            |
| 0,003277   | 114333,33 | 43173,33 | 693533,33       | 255366,67         | 772333,33       | 270100            |
| 0,00414    | 114933,33 | 42920    | 692866,67       | 253400            | 774566,67       | 270366,67         |
| 0,005243   | 114766,67 | 42666,67 | 694300          | 251100            | 775966,67       | 269033,33         |
| 0,006644   | 115000    | 42693,33 | 691433,33       | 251600            | 776700          | 269133,33         |
| 0,008417   | 115566,67 | 43163,33 | 688900          | 249866,67         | 777200          | 270566,67         |
| 0,01066    | 114100    | 43153,33 | 686833,33       | 250533,33         | 776766,67       | 269100            |
| 0,0135     | 113170    | 43273,33 | 681200          | 250233,33         | 773466,67       | 269266,67         |
| 0,0171     | 111893,33 | 43386,67 | 673200          | 249600            | 769200          | 269200            |
| 0,02165    | 109780    | 43566,67 | 662800          | 249100            | 762400          | 269000            |
| 0,02742    | 104696,67 | 44410    | 649300          | 248566,67         | 754566,67       | 268233,33         |
| 0,03473    | 95836,67  | 45236,67 | 631833,33       | 247566,67         | 743700          | 267900            |
| 0,04397    | 82200     | 45293,33 | 609000          | 246766,67         | 729666,67       | 267300            |
| 0,05568    | 65810     | 44153,33 | 578033,33       | 246266,67         | 711700          | 266433,33         |
| 0,07052    | 49496,67  | 40686,67 | 535033,33       | 246666,67         | 688400          | 265566,67         |
| 0,08931    | 38950     | 36643,33 | 475233,33       | 246966,67         | 657033,33       | 265666,67         |
| 0,1131     | 30006,67  | 32413,33 | 402500          | 243000            | 609600          | 267800            |
| 0,1432     | 22406,67  | 28353,33 | 325233,33       | 231266,67         | 531700          | 274900            |
| 0,1814     | 16080     | 23773,33 | 257333,33       | 210633,33         | 416933,33       | 282033,33         |
| 0,2297     | 11800     | 19840    | 203766,67       | 184266,67         | 305633,33       | 268400            |
| 0,2909     | 8676,67   | 16583,33 | 163333,33       | 157433,33         | 222966,67       | 235433,33         |
| 0,3684     | 6627,67   | 14120    | 131600          | 133233,33         | 171666,67       | 195166,67         |
| 0,4665     | 4852,33   | 11743,33 | 105586,67       | 112500            | 140633,33       | 157200            |
| 0,5907     | 3617      | 9780,33  | 83393,33        | 95506,67          | 116800          | 127700            |
| 0,7481     | 2483,33   | 7926,67  | 64613,33        | 81376,67          | 90120           | 108866,67         |
| 0,9474     | 1844,67   | 6682     | 49263,33        | 69090             | 67010           | 92830             |
| 1,2        | 1356,67   | 5746     | 37460           | 58503,33          | 50140           | 77520             |
| 1,519      | 1000,33   | 4974,67  | 28026,67        | 49316,67          | 37533,33        | 64500             |
| 1,924      | 739,83    | 4299     | 20760           | 41443,33          | 27846,67        | 53623,33          |
| 2,437      | 554,9     | 3765,33  | 15203,33        | 34753,33          | 20490           | 44533,33          |
| 3,086      | 412,97    | 3287     | 10979           | 29090             | 14973,33        | 36900             |
| 3,908      | 307,2     | 2901     | 7867,33         | 24323,33          | 10900           | 30580             |
| 4,949      | 229,27    | 2585,67  | 5657            | 20326,67          | 7887            | 25436,67          |
| 6,267      | 167,83    | 2312,33  | 4188,33         | 16976,67          | 5717,67         | 21186,67          |
| 7,936      | 119,1     | 2057     | 3125,33         | 14246,67          | 4258,33         | 17673,33          |
| 10,05      | 81,67     | 1828,33  | 2330            | 12000             | 3213,67         | 14783,33          |

| Table S2: | Storage           | modulus           | and loss | modulus | for pure | paraffin | samples | and | composites | with | Fe@MWCNTs | addition | in a | function | of |
|-----------|-------------------|-------------------|----------|---------|----------|----------|---------|-----|------------|------|-----------|----------|------|----------|----|
| temperate | ure, $\gamma = 0$ | 0.01%, <i>f</i> = | = 1 Hz   |         |          |          |         |     |            |      |           |          |      |          |    |

|                  | Para       | affin      | Paraffin + 10 wt | % Fe@MWCNTs       | Paraffin + 20 wt | % Fe@MWCNTs                      |
|------------------|------------|------------|------------------|-------------------|------------------|----------------------------------|
| T                | G'         | G''        | G'               | $\widetilde{G}''$ | G'               | $\widetilde{G}''$                |
| [K]              | [Pa]       | [Pa]       | [Pa]             | [Pa]              | [Pa]             | [Pa]                             |
| 288,15           | 3181666,67 | 1257000    | 11650000         | 3446666,67        | 14763300         | 4641333,33                       |
| 289,15           | 2798333,33 | 1167733,33 | 10624000         | 3270000           | 13280000         | 4341333,33                       |
| 290.15           | 2374666.67 | 1065033.33 | 9463333.33       | 3078000           | 11175000         | 3936500                          |
| 291.15           | 1919333.33 | 942433.33  | 8141333.33       | 2816666.67        | 10207300         | 3883666.67                       |
| 292,15           | 1466333.33 | 804200     | 6949333.33       | 2568000           | 8127000          | 3343000                          |
| 293 15           | 1110333 33 | 682466 67  | 5972000          | 2348666 67        | 6693333 33       | 2949000                          |
| 294 15           | 780633 33  | 537400     | 4719000          | 1939333 33        | 5377000          | 2521333 33                       |
| 295.15           | 551400     | 405000     | 3923666.67       | 1630000           | 4226000          | 2072000                          |
| 296.15           | 454833.33  | 341066.67  | 3350666.67       | 1411000           | 3574000          | 1803666.67                       |
| 297.15           | 390766.67  | 298866.67  | 3040333.33       | 1331000           | 3081000          | 1583000                          |
| 298 15           | 337033 33  | 260433 33  | 2631333 33       | 1198000           | 2630666 67       | 1378333 33                       |
| 299 15           | 292733 33  | 220833 33  | 1956000          | 1011500           | 2238666 67       | 1188666 67                       |
| 300 15           | 256233 33  | 194733 33  | 2014000          | 1014333 33        | 1956333 33       | 1095533 33                       |
| 301 15           | 217066.67  | 168900     | 1967333 33       | 883000            | 1640500          | 932750                           |
| 302,15           | 184566.67  | 149966 67  | 1806666 67       | 801766 67         | 1510333 33       | 877333 33                        |
| 302,15           | 172022 22  | 118300     | 1316000          | 700100            | 1327000          | 777133 33                        |
| 304 15           | 142700     | 107500     | 1434300          | 676033 33         | 1160000          | 685200                           |
| 205 15           | 172/00     | 01/80      | 127/722 22       | 614000            | 1020266 67       | 626600                           |
| 305,15           | 112076.67  | 74526 67   | 1255466.67       | 567766 67         | 1029200,07       | 531000                           |
| 300,13           | 111200     | 67360      | 1137066 67       | 506033 33         | 878433 33        | 185833 33                        |
| 209.15           | 00500      | 52210      | 1072022.22       | 446966 67         | 977966 67        | 200422.22                        |
| 200.15           | 67255      | 42020      | 710700           | 224750            | 877200,07        | 245700                           |
| 210.15           | 60100      | 42930      | 054266.67        | 240200            | 813300,07        | 3 <del>4</del> 3700<br>286066 67 |
| 211 15           | 66656 67   | 27526.67   | 934200,07        | 207622 22         | 766000           | 250400                           |
| 212.15           | 70606.67   | 21706.67   | 924333,33        | 307033,33         | 769000           | 239400                           |
| 312,15           | 79000,07   | 31/90,0/   | 960000,07        | 208/00            | 700900           | 239200,07                        |
| 313,13<br>214 1E | /3130,0/   | 2/9/0,0/   | 920600           | 255055,55         | 743330           | 213/00                           |
| 314,15           | /3213      | 21060      | 0/5155,55        | 244033,33         | 624200           | 109433,33                        |
| 315,15           | 42870      | 21900      | 83/800,0/        | 220100,07         | 624200           | 10/000,0/                        |
| 310,15           | 40820,07   | 25540,07   | /85133,33        | 210033,33         | 508933,33        | 117500                           |
| 31/,15           | 30150      | 19180      | /2//33,33        | 19/300            | 529700           | 11/500                           |
| 318,15           | 31490      | 19840      | 0/1833,33        | 190500            | 450833,33        | 123800                           |
| 319,15           | 33825      | 1/300      | 058050           | 1//350            | 410050           | 98370                            |
| 320,15           | 22210      | 124/2      | 5/5400           | 150/00,0/         | 345900           | 95530                            |
| 321,15           | 21000,07   | 1282/,0/   | 543000,07        | 13/1/0            | 292200           | 80830                            |
| 322,15           | 10280      | 5997       | 618450           | 155/50            | 245966,67        | /0/56,6/                         |
| 323,15           | 12//6,6/   | /885,33    | 44/200           | 12/396,67         | 205866,67        | 55960                            |
| 324,15           | 9542,33    | 4396,67    | 400800           | 105930            | 162200           | 52103,33                         |
| 325,15           | 6490       | 3385,67    | 391250           | 104820            | 128850           | 37950                            |
| 326,15           | 5485,67    | 2594,33    | 323133,33        | 89870             | 98370            | 32553,33                         |
| 327,15           | 3534,67    | 1926       | 291166,67        | 72330             | 73860            | 26996,67                         |
| 328,15           | 2152,33    | 961,33     | 263/33,33        | 66833,33          | 61600            | 17476,67                         |
| 329,15           | 1252,33    | 493,6      | 242263,33        | 52390             | 49190            | 16556,67                         |
| 330,15           | 720,33     | 294,63     | 228620           | 48856,67          | 42166,67         | 12223,33                         |
| 331,15           | 525,9      | 202,45     | 2148/3,33        | 44176,67          | 37603,33         | 10959,33                         |
| 332,15           | 435,55     | 135,2      | 208670           | 42000             | 40340            | 9624,33                          |
| 333,15           | 345,05     | 108,12     | 203156,67        | 39990             | 39523,33         | 8913,67                          |
| 334,15           | 285,55     | 81,04      | 199360           | 38300             | 39840            | 8387,67                          |
| 335,15           | 224,45     | 62,48      | 203170           | 34916,67          | 37473,33         | 8100,33                          |
| 336,15           | 165,8      | 45,36      | 231185           | 39140             | 38543,33         | 7313,67                          |
| 337,15           | 117,35     | 32,45      | 194210           | 33453,33          | 36643,33         | 6883,67                          |
| 338,15           | 91,2       | 23,84      | 191536,67        | 31572             | 35370            | 6633,33                          |

## Shielding properties – gamma ray

| Paraffin | Paraffin + 10 wt% Fe@MWCNTs                                                                                                        | Paraffin + 20 wt% Fe@MWCNTs                                                                                                                                                                                                                                                                                                                                                        |
|----------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 1                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.942    | 0.921                                                                                                                              | 0.919                                                                                                                                                                                                                                                                                                                                                                              |
| 0.827    | 0.823                                                                                                                              | 0.822                                                                                                                                                                                                                                                                                                                                                                              |
| 0.769    | 0.734                                                                                                                              | 0.724                                                                                                                                                                                                                                                                                                                                                                              |
| 0.704    | 0.656                                                                                                                              | 0.666                                                                                                                                                                                                                                                                                                                                                                              |
| 0.631    | 0.623                                                                                                                              | 0.601                                                                                                                                                                                                                                                                                                                                                                              |
| 0.569    | 0.561                                                                                                                              | 0.541                                                                                                                                                                                                                                                                                                                                                                              |
| 0.521    | 0.483                                                                                                                              | 0.472                                                                                                                                                                                                                                                                                                                                                                              |
| 0.490    | 0.465                                                                                                                              | 0.443                                                                                                                                                                                                                                                                                                                                                                              |
| 0.451    | 0.413                                                                                                                              | 0.395                                                                                                                                                                                                                                                                                                                                                                              |
| 0.406    | 0.359                                                                                                                              | 0.333                                                                                                                                                                                                                                                                                                                                                                              |
| 0.375    | 0.341                                                                                                                              | 0.321                                                                                                                                                                                                                                                                                                                                                                              |
| 0.325    | 0.319                                                                                                                              | 0.287                                                                                                                                                                                                                                                                                                                                                                              |
| 0.293    | 0.282                                                                                                                              | 0.260                                                                                                                                                                                                                                                                                                                                                                              |
|          | Paraffin<br>1<br>0.942<br>0.827<br>0.769<br>0.704<br>0.631<br>0.569<br>0.521<br>0.490<br>0.451<br>0.406<br>0.375<br>0.325<br>0.293 | $\begin{tabular}{ c c c c c } \hline Paraffin & Paraffin + 10 wt\% Fe@MWCNTs \\ \hline 1 & 1 & 1 & \\ 0.942 & 0.921 & \\ 0.827 & 0.823 & \\ 0.769 & 0.734 & \\ 0.704 & 0.656 & \\ 0.631 & 0.623 & \\ 0.569 & 0.561 & \\ 0.521 & 0.483 & \\ 0.490 & 0.465 & \\ 0.451 & 0.413 & \\ 0.406 & 0.359 & \\ 0.375 & 0.341 & \\ 0.325 & 0.319 & \\ 0.293 & 0.282 & \\ \hline \end{tabular}$ |

Table S3: The summary of experimental data for the pure paraffin and manufactured composites with 10 and 20 wt.% of Fe@MWCNT addition presented in the form of the ratio of the number of counts for a given layer thickness ( $N_{reduced layer}$ ) to the number of counts coming from the <sup>60</sup>Co source ( $N_{reduced source}$ ) as the average of three measurement series for each composite sample

### Shielding properties - X-ray

Table S4: The data summary of X-ray shielding ability for the composites with 10 and 20 wt.% addition of Fe@MWCNTs and for the pure paraffin presented in the form of the ratio of the signal intensity of given material layer thickness ( $I_{layer sample}$ ) to the signal intensity for aired field ( $I_{air}$ ) at 70 kV voltage

| <i>x</i> (cm) | Paraffin | Paraffin + 10 wt% Fe@MWCNTs | Paraffin + 20 wt% Fe@MWCNTs |
|---------------|----------|-----------------------------|-----------------------------|
| 0             | 1        | 1                           | 1                           |
| 2             | 0.685    | 0.678                       | 0.670                       |
| 4             | 0.489    | 0.453                       | 0.425                       |
| 6             | 0.346    | 0.298                       | 0.266                       |
| 8             | 0.240    | 0.197                       | 0.168                       |

Table S5: The data summary of X-ray shielding ability for the composites with 10 and 20 wt.% addition of Fe@MWCNTs and for the pure paraffin presented in the form of the ratio of the signal intensity of given material layer thickness ( $I_{layer sample}$ ) to the signal intensity for aired field ( $I_{air}$ ) at 80 kV voltage

| <i>x</i> (cm) | Paraffin | Paraffin + 10 wt% Fe@MWCNTs | Paraffin + 20 wt% Fe@MWCNTs |
|---------------|----------|-----------------------------|-----------------------------|
| 0             | 1        | 1                           | 1                           |
| 2             | 0.892    | 0.855                       | 0.854                       |
| 4             | 0.654    | 0.594                       | 0.565                       |
| 6             | 0.468    | 0.398                       | 0.363                       |
| 8             | 0.333    | 0.269                       | 0.235                       |

Table S6: The data summary of X-ray shielding ability for the composites with 10 and 20 wt.% addition of Fe@MWCNTs and for the pure paraffin presented in the form of the ratio of the signal intensity of given material layer thickness ( $I_{layer sample}$ ) to the signal intensity for aired field ( $I_{air}$ ) at 90 kV voltage

| x (cm) | Paraffin | Paraffin + 10 wt% Fe@MWCNTs | Paraffin + 20 wt% Fe@MWCNTs |
|--------|----------|-----------------------------|-----------------------------|
| 0      | 1        | 1                           | 1                           |
| 2      | 0.999    | 0.999                       | 0.999                       |
| 4      | 0.936    | 0.867                       | 0.832                       |
| 6      | 0.687    | 0.596                       | 0.549                       |
| 8      | 0.495    | 0.411                       | 0.363                       |

Table S7: The data summary of X-ray shielding ability for the composites with 10 and 20 wt.% addition of Fe@MWCNTs and for the pure paraffin presented in the form of the ratio of the signal intensity of given material layer thickness ( $I_{\text{layer sample}}$ ) to the signal intensity for aired field ( $I_{\text{air}}$ ) at 100 kV voltage

| x (cm) | Paraffin | Paraffin + 10 wt% Fe@MWCNTs | Paraffin + 20 wt% Fe@MWCNTs |
|--------|----------|-----------------------------|-----------------------------|
| 0      | 1        | 1                           | 1                           |
| 2      | 0.999    | 0.999                       | 0.999                       |
| 4      | 0.999    | 0.999                       | 0.999                       |
| 6      | 0.915    | 0.808                       | 0.751                       |
| 8      | 0.673    | 0.567                       | 0.505                       |

Table S8: The data summary of X-ray shielding ability for the composites with 10 and 20 wt.% addition of Fe@MWCNTs and for the pure paraffin presented in the form of the ratio of the signal intensity of given material layer thickness ( $I_{layer sample}$ ) to the signal intensity for aired field ( $I_{air}$ ) at 110 kV voltage

| <i>x</i> (cm) | Paraffin | Paraffin + 10 wt% Fe@MWCNTs | Paraffin + 20 wt% Fe@MWCNTs |
|---------------|----------|-----------------------------|-----------------------------|
| 0             | 1        | 1                           | 1                           |
| 2             | 0.999    | 0.999                       | 0.999                       |
| 4             | 0.999    | 0.999                       | 0.999                       |
| 6             | 0.999    | 0.999                       | 0.973                       |
| 8             | 0.865    | 0.741                       | 0.666                       |

Table S9: The data summary of X-ray shielding ability for the composites with 10 and 20 wt.% addition of Fe@MWCNTs and for the pure paraffin presented in the form of the ratio of the signal intensity of given material layer thickness ( $I_{layer sample}$ ) to the signal intensity for aired field ( $I_{air}$ ) at 120 kV voltage

| x (cm) | Paraffin | Paraffin + 10 wt% Fe@MWCNTs | Paraffin + 20 wt% Fe@MWCNTs |
|--------|----------|-----------------------------|-----------------------------|
| 0      | 1        | 1                           | 1                           |
| 2      | 0.999    | 0.999                       | 0.999                       |
| 4      | 0.999    | 0.999                       | 0.999                       |
| 6      | 0.999    | 0.999                       | 0.999                       |
| 8      | 0.999    | 0.922                       | 0.836                       |

Table S10: The data summary of X-ray shielding ability for the composites with 10 and 20 wt.% addition of Fe@MWCNTs and for the pure paraffin presented in the form of the ratio of the signal intensity of given material layer thickness ( $I_{layer sample}$ ) to the signal intensity for aired field ( $I_{air}$ ) at 130 kV voltage

| x (cm) | Paraffin | Paraffin + 10 wt% Fe@MWCNTs | Paraffin + 20 wt% Fe@MWCNTs |
|--------|----------|-----------------------------|-----------------------------|
| 0      | 1        | 1                           | 1                           |
| 2      | 0.999    | 0.999                       | 0.999                       |
| 4      | 0.999    | 0.999                       | 0.999                       |
| 6      | 0.999    | 0.999                       | 0.999                       |
| 8      | 0.999    | 0.999                       | 0.986                       |



Fig. S3: The dependence of X-ray<sub>attenuation factor</sub>  $^{-1}$  for the manufactured composites with 10 wt.% and 20 wt.% of Fe@MWCNTs addition and for the pure paraffin at 80, 90, 100, 110, 120 and 130 kV voltage.