## Protein nanofibrils/polysaccharides aerogel beads as porous functional bioadsorbent for water treatment

Mandana Dilamian, <sup>a</sup> Majid Montazer, <sup>b</sup> Hossein Yousefi, <sup>c,d</sup> Daniel E. Otzen, <sup>e</sup> Dina Morshedi, <sup>a\*</sup>

<sup>a</sup> Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran.

<sup>b</sup> Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran.

<sup>c</sup> Laboratory of Renewable Nanomaterials, Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4913815739, Iran.

<sup>d</sup> Nanonovin Polymer Co., Gorgan University of Agricultural Sciences and Natural Resources, 4913815482 Gorgan, Iran.

<sup>e</sup> Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.

#### List of abbreviation

β-lactoglobulin BLG CA Citric Acid CNFs Cellulose nanofibers CR Congo red Chitosan Cs CNFs/Cs/PNFs aerogel beads CPCs **PNFs** Protein nanofibrils PNFs-C Cross-linked protein fibrils ThT thioflavin T

### Assessment of protein nanofibrils formation

thioflavin T (ThT) fluorescence experiments were applied to explore the formation of the protein nanofibrils for purified (PNFs) and cross-linked protein fibrils (PNF-C) <sup>1,2</sup>. The sharp fluorescence intensity of ThT for all samples suggested that  $\beta$ -lactoglobulin ( $\beta$ LG) was actively involved in the fibril formation (Fig. S1A). In another test, equal amounts of purified PNFs and cross-linked PNFs solutions were drop-cast into a silicon mold. The solutions contained two different concentrations of citric acid (CA) (1 and 1.5 wt. %). The PNFs solution was evenly distributed on the substrate and then dried in an oven at 65°C for 10 h. The test result interestingly revealed (Fig. S1B-1) the brittleness of the purified PNFs film and its failure to form a uniform film, demonstrating the low mechanical property of PNFs <sup>3</sup>. In contrast, the protein solutions incorporated with CA resulted in free-standing, homogeneous, flexible films (Fig. S1B-2). These valuable findings demonstrated the efficient integration of CA into the PNFs chains. However, increasing the CA concentration to 1.5 wt. % reduced the flexibility of the films (Fig. S1B-3). Consequently, PNF-C1 was selected as the highly effective cross-linked PNFs solution.





Fig. S1 (A) ThT fluorescence spectra of PNFs in the absence (PNFs, represented by the green line) and presence of CA with different concentrations (PNFs-C, represented by the red and blue lines). (B) Digital images of the PNFs films were captured before and after the addition of CA. (1) PNFs, (2) PNFs with 1 wt. % (PNFs-C1), and (3) 1.5 wt. % (PNFs-C1.5) of CA.



**Fig. S2** Surface morphology of the freeze-dried biomaterials: FE-SEM images of (A) Cellulose nanofibers (CNFs) aerogel, (B-D) High-resolution images of CNFs aerogel illustrating the porous structure of the aerogel. E) Neat chitosan (Cs) aerogel, (F-H) High-resolution images of Cs aerogel demonstrating the integration of fibrils in the formation of the interconnected network. (I) PNFs aerogel, (J-L) High-resolution images of PNFs revealing compact lavered sheets

Table S1 Characteristics of Congo red (CR) <sup>4</sup>

| CA Index name      | 1-Naphthalenesulfonic acid, 3,3'-[(1,1'-biphenyl)-4,4'-diylbis(2,1-diazenediyl)]bis[4-amino-,sodium salt (1:2)]                        |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CAS No.            | 573-58-0                                                                                                                               |  |  |  |  |
| Molecular formula  | $C_{32}H_{22}N_6Na_2O_6S_2$                                                                                                            |  |  |  |  |
| Molecular weight   | 696.66 g mol <sup>-1</sup>                                                                                                             |  |  |  |  |
| Chemical Structure | $H_2N \qquad N \qquad \qquad$ |  |  |  |  |
| Molecular surface  | 557.6 cm <sup>2</sup>                                                                                                                  |  |  |  |  |
| area               |                                                                                                                                        |  |  |  |  |
| Density            | 0.995 g cm⁻³ at 25 ºC                                                                                                                  |  |  |  |  |

Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024



Fig. S3 FTIR spectra of PNFs before (PNFs, blue line) and after crosslinking with CA (PNF-C1, red line) shown in full range 3800-500 cm<sup>-1</sup>.

Fig. S4 XRD spectra of CCs and CPCs composite aerogel beads and their counterparts (CNFs, Cs, and PNFs).





Fig. S5 The adsorption capacity and removal efficiency of CNFs/Cs/PNFs aerogel beads (CPCs) for removing various cationic and anionic dyes (The inset images representing remained dye solutions at adsorption equilibrium time).

**Before adsorption** 



Fig. S6 Digital and FE-SEM images with corresponding EDX spectra and elemental mapping of C, O, N, and S for CPCs aerogel. (A-C) Before, and (D-F) After CR dye adsorption. Calculated values from the elemental maps of CPCs aerogel: (G) C and O, (H) N, and S.

# Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

| Adsorbant                                                                             | $pH_{zpc}$       | Q <sub>max</sub> (mg g <sup>-1</sup> ) | Isotherm   | Year | Ref. |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------|----------------------------------------|------------|------|------|--|--|--|--|
| Polysaccharide-based materials                                                        |                  |                                        |            |      |      |  |  |  |  |
| chitosan hydrobeads                                                                   | 6.4              | 93.71                                  | Langmuir   | 2007 | 5    |  |  |  |  |
| chitosan/montmorillonite                                                              | 7                | 81.23                                  | Langmuir   | 2007 | 6    |  |  |  |  |
| chitosan/multiwalled carbon nanotubes                                                 | 5                | 450.4                                  | Langmuir   | 2010 | 7    |  |  |  |  |
| cellulose/Fe <sub>3</sub> O <sub>4</sub> /activated carbon composites                 | natural pH       | 66.09                                  | Langmuir   | 2011 | 8    |  |  |  |  |
| cellulose/ chitosan hydrogel beads                                                    | 7                | 40                                     | Langmuir   | 2015 | 9    |  |  |  |  |
| Tea waste                                                                             | 10               | 32.26                                  | Langmuir   | 2015 | 10   |  |  |  |  |
| Ni/Al mixed oxide microspheres                                                        | 6                | 1229.59                                | SIP        | 2015 | 11   |  |  |  |  |
| CaCO3-loaded cellulose aerogel                                                        | natural pH       | 75.81                                  | -          | 2015 | 12   |  |  |  |  |
| Chitosan Beads                                                                        | 6                | 166.67                                 | Langmuir   | 2016 | 13   |  |  |  |  |
| diammonium tartrate modified chitosan                                                 | 8                | 1597                                   | SIP        | 2017 | 14   |  |  |  |  |
| Modified chitosan hydrogel beads                                                      | 5                | 1994                                   | SIP        | 2017 | 15   |  |  |  |  |
| Cellulose/chitosan aerogel                                                            | 7                | 381.7                                  | Langmuir   | 2018 | 16   |  |  |  |  |
| graphene-chitosan composite hydrogel                                                  | 7                | 384.62                                 | Langmuir   | 2018 | 17   |  |  |  |  |
| dialdehyde micro fibrillated cellulose/<br>chitosan composite film                    | 5.5              | 152.5                                  | Langmuir   | 2018 | 18   |  |  |  |  |
| chitosan-Fe(OH)₃ beads                                                                | 8.39             | 445.32                                 | Langmuir   | 2018 | 19   |  |  |  |  |
| cellulose-chitosan foams                                                              | 7.4              | 1170.2                                 | Langmuir   | 2018 | 20   |  |  |  |  |
| DAC-crosslinked cellulose-chitosan foam                                               | 7.4              | 1548.2                                 | SIP        | 2019 | 21   |  |  |  |  |
| Cationized rice husk cellulose                                                        | 7.27             | 580.09                                 | Langmuir   | 2019 | 22   |  |  |  |  |
| pine bark                                                                             | 3.4              | 2.51                                   | Freundlich | 2019 | 23   |  |  |  |  |
| graphene oxide/waste-newspaper cellulose aerogel                                      | unadjusted<br>pH | 140.4                                  | Langmuir   | 2020 | 24   |  |  |  |  |
| Cellulose Nanofibril/Carbon Nanomaterial<br>aerogel                                   | natural pH       | 585.3                                  | Langmuir   | 2020 | 25   |  |  |  |  |
| chitosan/cellulose hydrogel                                                           | 3                | 1480                                   | Langmuir   | 2022 | 26   |  |  |  |  |
| κ-carrageenan/polyacrylamide double network<br>aerogel containing graphene oxide (GO) | 7                | 20.718                                 | Langmuir   | 2022 | 27   |  |  |  |  |
| carboxyl cellulose<br>nanofibers/montmorillonite/polyethyleneimine<br>aerogel         | unadjusted<br>pH | 3114                                   | Langmuir   | 2022 | 28   |  |  |  |  |
| waste bamboo paper and chitosan biohybrid aerogel                                     | 6.28             | 559.6                                  | SIP        | 2022 | 29   |  |  |  |  |
| magnetic hydroxyethyl cellulose/Fe <sub>3</sub> O <sub>4</sub>                        | 7                | 308.64                                 | Langmuir   | 2023 | 30   |  |  |  |  |
| abundant sodium alginate (SA)/gellan gum<br>aerogel                                   | natural pH       | 576.5                                  | Langmuir   | 2023 | 31   |  |  |  |  |
| Extracted cellulose/chitosan aerogel                                                  | Origin pH        | 255.1                                  | Langmuir   | 2023 | 32   |  |  |  |  |
| Chitosan–Quinoa Bran Aerogel                                                          | 5                | 182.48                                 | Langmuir   | 2023 | 33   |  |  |  |  |
| Chitosan/UiO-67 hydrogel                                                              | 7.2              | 1001.2                                 | Langmuir   | 2023 | 34   |  |  |  |  |
| micro/nano MIL-88A (Fe, Al, Fe-Al)/ chitosan<br>composite sponge                      | 7.1-8.3          | 607-1312                               | SIP        | 2023 | 35   |  |  |  |  |

### Table S2 Comparison of maximum adsorption capacity of various polysaccharide and PNFs-based aerogels for CR.

**Protein nanofibrils and Protein Isolates** 

## Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

| powdered eggshell                                                  | 8.8              | 95.25                            | Langmuir         | 2013 | 36           |
|--------------------------------------------------------------------|------------------|----------------------------------|------------------|------|--------------|
| Industrial waste eggshell                                          | 7.09             | 49.5                             | Freundlich       | 2017 | 37           |
| regenerated silk materials                                         | not<br>mentioned | above 96<br>percent<br>rejection | not<br>mentioned | 2017 | 38           |
| silk nanofibril (SNF)/ hydroxyapatite (HAP)                        |                  | Flux<br>rejection                | not<br>mentioned | 2017 | 39           |
| modified eggshell                                                  | 4.5              | 117.65                           | Langmuir         | 2019 | 40           |
| gluten materials                                                   | <6               | 211.1                            | Langmuir         | 2019 | 41           |
| Protein Amyloid Fibrils aerogel                                    | 5.1              | 97.5                             | not<br>mentioned | 2022 | 42           |
| Cellulose nanofibers/Chitosan/Protein<br>nanofibrils aerogel beads | 7.4              | 1349.8                           | SIP              | 2023 | This<br>work |
|                                                                    |                  |                                  |                  |      |              |

## **References:**

- K. Gade Malmos, L. M. Blancas-Mejia, B. Weber, J. Buchner, M. Ramirez-Alvarado, H. Naiki and D. Otzen, *Amyloid Int. J. Exp. Clin. Investig. Off. J. Int. Soc. Amyloidosis*, 2017, 24, 1–16.
- 2 B. Ma, X. You and F. Lu, *Int. J. Biol. Macromol.*, 2014, **64**, 162–167.
- 3 M. Peydayesh, M. Bagnani and R. Mezzenga, ACS Sustain. Chem. Eng., 2021, **9**, 11916– 11926.
- 4 S. Chatterjee, S. Chatterjee, B. P. Chatterjee and A. K. Guha, *Colloids Surfaces A Physicochem. Eng. Asp.*, 2007, **299**, 146–152.
- 5 S. Chatterjee, S. Chatterjee, B. P. Chatterjee and A. K. Guha, *Colloids Surfaces A Physicochem. Eng. Asp.*, 2007, **299**, 146–152.
- 6 L. Wang and A. Wang, *J. Hazard. Mater.*, 2007, **147**, 979–985.
- 7 S. Chatterjee, M. W. Lee and S. H. Woo, *Bioresour. Technol.*, 2010, **101**, 1800–1806.
- 8 H. Y. Zhu, Y. Q. Fu, R. Jiang, J. H. Jiang, L. Xiao, G. M. Zeng, S. L. Zhao and Y. Wang, *Chem. Eng. J.*, 2011, **173**, 494–502.
- 9 M. Li, Z. Wang and B. Li, *Desalin. Water Treat.*, 2016, **57**, 16970–16980.
- 10 M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi and H. Fatoorehchi, *Chem. Eng. Commun.*, 2015, **202**, 181–193.
- 11 W. Huang, X. Yu and D. Li, *RSC Adv.*, 2015, **5**, 84937–84946.

- 12 K. Y. Chong, C. H. Chia, S. Zakaria, M. S. Sajab, S. W. Chook and P. S. Khiew, *Cellulose*, 2015, **22**, 2683–2691.
- 13 N. P. Raval, P. U. Shah, D. G. Ladha, P. M. Wadhwani and N. K. Shah, *Desalin. Water Treat.*, 2016, **57**, 9247–9262.
- 14 A. Zahir, Z. Aslam, M. S. Kamal, W. Ahmad, A. Abbas and R. A. Shawabkeh, *J. Mol. Liq.*, 2017, **244**, 211–218.
- 15 C. Lin, S. Li, M. Chen and R. Jiang, J. Dispers. Sci. Technol., 2017, **38**, 46–57.
- 16 Y. Wang, H. Wang, H. Peng, Z. Wang, J. Wu and Z. Liu, *Fibers Polym.*, 2018, **19**, 340–349.
- 17 S. Omidi and A. Kakanejadifard, *RSC Adv.*, 2018, **8**, 12179–12189.
- 18 X. Zheng, X. Li, J. Li, L. Wang, W. Jin, Y. Pei and K. Tang, *Int. J. Biol. Macromol.*, 2018, **107**, 283–289.
- XinxinYang, Y. Li, H. Gao, C. Wang, X. Zhang and H. Zhou, *Int. J. Biol. Macromol.*, 2018, 117, 30–41.
- 20 U.-J. Kim, D. Kim, J. You, J. W. Choi, S. Kimura and M. Wada, *Cellulose*, 2018, **25**, 2615–2628.
- 21 U. J. Kim, S. Kimura and M. Wada, *Carbohydr. Polym.*, 2019, **214**, 294–302.
- 22 Z. Jiang and D. Hu, J. Mol. Liq., 2019, **276**, 105–114.
- K. Litefti, M. S. Freire, M. Stitou and J. González-Álvarez, Sci. Rep., 2019, 9, 1–11.
- 24 C. Feng, P. Ren, Z. Li, W. Tan, H. Zhang, Y. Jin and F. Ren, *New J. Chem.*, 2020, **44**, 2256–2267.
- 25 Z. Yu, C. Hu, A. B. Dichiara, W. Jiang and J. Gu, *Nanomaterials*, 2020, **10**, 1–20.
- D. Li, J. Zhang, L. P. Li, G. Cai, W. Zuo, W. Zhan, P. Wang and Y. Tian, J. Clean. Prod., 2022, 371, 133650.
- 27 S. Tarashi, H. Nazockdast, S. Shafaghsorkh and G. Sodeifian, *Sep. Purif. Technol.*, 2022, **287**, 120587.
- K. Fan, T. Zhang, S. Xiao, H. He, J. Yang and Z. Qin, *Int. J. Biol. Macromol.*, 2022, **211**, 1–14.
- C. Qiu, Q. Tang, X. Zhang, M. C. Li, X. Zhang, J. Xie, S. Zhang, Z. Su, J. Qi, H. Xiao, Y. Chen,
  Y. Jiang, C. F. de Hoop and X. Huang, *J. Clean. Prod.*, 2022, **338**, 130550.
- 30 Y. Hui, R. Liu, L. Li, Q. Sun, Z. Xiao, A. Xu and S. Liu, *J. Porous Mater.*, 2023, **30**, 1735–1751.
- 31 Z. Qin, K. Dong, Y. Zhang, Y. Jiang, L. Mo and S. Xiao, *Bioresour. Technol.*, 2023, **370**, 128576.

- 32 Y. Liu, Y. Ke, Q. Shang, X. Yang, D. Wang and G. Liao, *Chem. Eng. J.*, 2023, **451**, 138934.
- 33 M. Tan, H. Lv, Q. Zhao, B. Wang, S. Zheng and K. Li, *Environ. Eng. Sci.*, 2023, **40**, 233–243.
- 34 Z. Jing, Y. Li, Y. Zhang, M. Wang, B. Chen, Y. Sun, K. Chen, Q. Du, X. Pi, Y. Wang, S. Zhao and Y. Jin, *ChemistrySelect*, 2023, **8**, 202204367.
- 35 Y. Jin, Y. Li, Q. Du, B. Chen, K. Chen, Y. Zhang, M. Wang, Y. Sun, S. Zhao, Z. Jing, J. Wang, X. Pi and Y. Q. Wang, *Microporous Mesoporous Mater.*, 2023, **348**, 112404.
- 36 M. A. Zulfikar and H. Setiyanto, *Int. J. ChemTech Res.*, 2013, **5**, 1532–1540.
- 37 M. A. Abdel-Khalek, M. K. Abdel Rahman and A. A. Francis, *J. Environ. Chem. Eng.*, 2017, 5, 319–327.
- 38 L. Lv, X. Han, L. Zong, M. Li, J. You, X. Wu and C. Li, *ACS Nano*, 2017, **11**, 8178–8184.
- 39 S. Ling, Z. Qin, W. Huang, S. Cao, D. L. Kaplan and M. J. Buehler, *Sci. Adv.*, 2017, **3**, 1–12.
- 40 S. Parvin, B. K. Biswas, M. A. Rahman, M. H. Rahman, M. S. Anik and M. R. Uddin, *Chemosphere*, 2019, **236**, 124326.
- 41 X. Zhang, Y. Li, M. Li, H. Zheng, Q. Du, H. Li, Y. Wang, D. Wang, C. Wang, K. Sui, H. Li and Y. Xia, *J. Colloid Interface Sci.*, 2019, **556**, 249–257.
- 42 X. Jia, M. Peydayesh, Q. Huang and R. Mezzenga, *Small*, 2022, **18**, 2105502.