## ROS-releasing PVA sub-micron antimicrobial dressing with enhanced aqueous stability and mechanical properties

Joel Yupanqui Mieles<sup>a</sup>, Cian Vyas<sup>ab</sup>, Gavin Humphreys<sup>c</sup>, Carl Diver<sup>d</sup>, Paulo Bartolo<sup>ab</sup>

<sup>a</sup> Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK

<sup>b</sup> Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

<sup>c</sup> Division of Pharmacy & Optometry, University of Manchester, UK

<sup>d</sup> Department of Engineering, Manchester Metropolitan University, UK

Corresponding authors: joel.yupanquimieles@manchester.ac.uk (J.Y.M.); cian.vyas@ntu.edu.sg (C.V); pbartolo@ntu.edu.sg (P.B.)



**Figure S1**. pH of PVA RO40 solution (including HCI) as it changes with time within a

2 h period.

## Supplementary data



**Figure S2.** (a) Average fibre diameter of PVA RO40 Vap CL 2 h electrospun samples before and after acetone and IPA washes; (b) SEM image, and (c) fibre distribution of

unwashed PVA RO40 Vap CL 2 h mesh; (d) SEM images, and (e) fibre distributions of PVA RO40 Vap CL 2 h meshes after IPA and acetone washes.



Figure S3. (a) SEM images and (b) fibre distributions of PVA RO40 Vap CL 6 h electrospun samples before and after immersion in PBS for 1 and 24 h; (c) SEM

images and (d) fibre distributions of PVA RO40 Vap CL 48 h electrospun samples before and after immersion in PBS for 1 and 24 h; (c) average fibre diameter of PVA RO40 Vap CL 6 h and 48 h electrospun samples before and after immersion in PBS for 1 and 24 h.



**Figure S4.** Digital pictures of uncrosslinked, Vap CL 6 h and Vap CL 48 h PVA RO40 electrospun samples after immersion in PBS for 24 h. Samples were dried in vacuum oven at 35°C for 24 h.