NIR-responsive Porous Gold Nanorod Dispersed in 3D Gelatin Scaffold for Stimuli Responsive Drug Release and Synergistic Therapy

Snigdharani Panda,^a Irfan Khan,^a Suditi Neekhra,^b Rohit Srivastava,^b Sunita Srivastava ^{*a}

Electronic supporting Information

Figure S1 FESEM image of sodium dodecyl sulphate stabilized Se-Te nanorod template.

Figure S2, S3 Comparative surface charge, FTIR spectra of aqueous dispersed Se-Te template and cysteamine functionalized PGNR.

Figure S4 Deconvoluted high resolution Au 4f spectrum

Figure S5 Linearly fitted logarithmic graph of N2 adsorption-desorption isotherm

Figure S6 UV-VIS absorption spectra of SeTe nanorod template and porous gold nanorod sample, inset: visual images of corresponding real samples in cuvette

Table S1 Comparative report on few recently reported NIR active photothermal materials and its efficiency

Material	Laser Power	η(%)	Reference
Hollow gold nanosphere	808 nm, 1.5W/cm ²	21.7	ACS Appl. Mater. Interfaces 2017 , 9, 40017–40030
Polydopamine	808 nm, 1W/cm ²	33.4	ACS Applied Materials & Interfaces 2018 , 10, 15, 12544-12552
hollow MOF/polydopamine Janus nanoparticles	808 nm, 1W	29.7	Chem. Eng. Journ., 2019, 378, 1221756
Miniature hollow gold nanorod	1064 nm, 690mW/cm ²	34	Small 2020, 16, 2002748
Hollow Ag@Au-Ce6 NPs	808 nm, 808mW/cm ²	33.2	Biomater. Sci., 2023, 11, 4874–4889
HAuNS@PEG-bio	1064 nm, 1W	63	J. Mater. Chem. B, 2023 ,11, 10003-10018
Hollow octahedron Cu ₂ -xSe nanoparticles	1064 nm, 1W	55.97	Nanoscale, 2023, Advance Article
Cysteamine @PGNR	750 nm, 1W/cm ²	79.25	Present study

Figure S7 Drug release profile with respect to time for pH 4, 5, 6 and 7

Table S2- Comparative DOX loading capabilit	y and encapsulation	efficiency in	different porous
and nonporous material			

Porous Nanostructure			Non-porous Nanostructure				
Material	DOX loading (%)	Encapsulation Efficiency (%)	Release (%)	Material	DOX loading (%)	Encapsulation efficiency (%)	Release (%)
Mesoporous carbon @V ₂ O ₅ (Langmuir 2024, 40, 6471–64)	Not given	88.0	78.0% in 60min	Self-assembled cyclodextrin conjugated gold nanocluster (J. Mater. Chem. B, 2024, 12, 3521– 3532)	2.9	92.2	63.0 in 24h
Chitosan stabilized gold core-shell (Adv. Therap. 2024, 7, 2300165)	6.5	87.0	91.0% in 48h	Thiolated-PEG- DOX conjugated gold nanoparticle (ACS Appl. Mater. Interfaces 2017, 9, 8569–8580)	Not given	27.3	91.8 in 132h
Polylactide-co- glycolide (PLG) nanoparticle (Small 2023, 2306726)	Not given	(76.0-89.0) Varies with particle size	40% in 20 min	Fe ₃ O ₄ -BCD-Pep42 (ACS Appl. Bio Mater. 2023, 6, 1019–1031)	5.37	41.38	49.0 in120h
Porous silica coated gold nanorod (ACS Appl. Bio Mater. 2023, 6, 1915–1933)	30.0	93.9	90.0% in 6h	Polymeric nanoparticle conjugated DOX (mPEG-b- PPLGFc@Dox) (Small 2023, 19,	9.1	90.5	80.0 in 72h

				2205024)			
Porous calcite microsphere	11.0	95.0	56% in 21 days	PAA-PEG- GNRs@DOX	Not given	51.0	50.0 in 45 min
(Colloids and Surfaces B:				(Dalton Trans., 2011, 40, 9789–			(acetate buffer)
2020, 186, 110720)				9794)			
PEI nanogel- ultrasmall Fe ₃ O ₄ NP (Bioconjugate	21.9	51.4	44.0% in 72h				
Chem. 2020, 31, 907–915)							
PGNR	10.0	99.0	72% in				
(Present work)			120 min				

Table S3 Comparative IC-50 value for free DOX, PGNR material and DOX loaded therapeutic

 material

Sample	IC50 value(µg/mL)
Doxorubicin (literature)	13.76
Free Dox(our finding)	20
PGNR+NIR	100
PGNR-DOX-gel +NIR	20 (2 μg free DOX present in 20μg PGNR- DOX-gel)

Figure S8 Statistically significant difference in drug release is shown as mean \pm S.E. under laser ON and OFF condition (where ** is p=0.0024, *** is p= 0.0001, ns is non-significant)

Figure S9 Statistical analysis of the cell viability study obtained from almarBlue assay on (a) L929 cells (b) HeLa cells (* is p=0.0138, ** is p=0.0026, *** is p=0.0001, **** is p<0.0001)

Figure S10 Photothermal stability of PGNR and PGNR-DOX-Gel after 3 consecutive cycles of laser ON and OFF (750 nm, 1W power)

Figure S11 Bright field images of Laser scanning confocal microscopy (corresponds to figure 7)