Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Experimental and Computational Study of Zn Doping in Li_{5+x}La₃Nb_{2-x}Zr_xO₁₂ Garnet Solid State Electrolytes

Bo Dong^{†,*}, Bassey Oboho[‡], Linhao Li^Σ, Xiao Tao[§], Pengcheng Zhu[†], Mark P. Stockham[†], Chuan Li[⊥], Roger Smith[‡], Yongliang Li[⊥], Yulong Ding[⊥], Pooja Goddard^{‡,*}, Peter R. Slater^{†,*}

†School of Chemistry, University of Birmingham, B15 2TT

‡ Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK

∑Department of Materials Science and Engineering, University of Sheffield, S1 3JD

§ School of Metallurgy and Materials, University of Birmingham, B15 2TT ⊥School of Chemical Engineering, University of Birmingham, B15 2TT

*b.dong@bham.ac.uk; p.goddard@lboro.ac.uk; p.r.slater@bham.ac.uk;

Figure S1 Variation of lattice parameter a and volume V for $Li_{5-2y}Zn_yLa_3Nb_2O_{12}$ with composition y.

Figure S2: MSD against time for the pure LLNO system at 1100 K using an NVT ensemble for 2 ns.

Figure S3 Electrochemical impedance spectra Li//LLZN//Li symmetric cell.

Figure S4 (a) Electrochemical impedance spectra of Li//LLZNZ-PTFE//Li
symmetric cells. (b) Charge – discharge voltage profile of the Li//LLZNZ PTFE//Li symmetry cell at room temperature with 100 μA cm⁻² current density.