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Figure S1: Representative SEM images for the monoliths (a) monoUiO-66-NH2-30%-B and (b) 
monoUiO-66-NH2-30%-A, contrasting the smoothness of the surface of the monolith before 
thermolysis (a) compared to after thermolysis (b).

Figure S2: Representative low magnification SEM images for the monoliths (a) monoUiO-66-
NH2-30%-B and (b) monoUiO-66-NH2-30%-A, contrasting the smoothness of the surface of the 
monolith before thermolysis (a) compared to after thermolysis (b).
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Figure S3: Representative low magnification TEM images of (a) monoUiO-66-NH2-30%-B 
and (b) monoUiO-66-NH2-30%-A.

Figure S4: Representative TEM images of (a) monoUiO-66-NH2-30%-B and (b) monoUiO-66-
NH2-30%-A.
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Figure S5: SEM-EDX plot for monoUiO-66-NH2-30%-B. Inset: Area scanned. The sample 
was sputter-coated with Cr for analysis.

Figure S6: EDX elemental mapping showing how the elements are dispersed in monoUiO-66-
NH2-30%-B: (a) carbon, (b) oxygen, (c) composite map, (d) zirconium. All the elements are 
evenly dispersed throughout the monolith, as shown in (c).
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Figure S7: SEM-EDX plot for monoUiO-66-NH2-30%-A. Inset: Area scanned. The sample 
was sputter-coated with Cr for analysis.

Figure S8: EDX elemental mapping showing how the elements are dispersed in monoUiO-66-
NH2-30%-A: (a) carbon, (b) oxygen, (c) composite map, (d) zirconium, and (e) chlorine. All 
the elements are evenly dispersed throughout the monolith, as shown in (c).
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Figure S9: 1H NMR spectrum of monoUiO-66-NH2-30%-B (500.200 MHz). Spectrum recorded 
at 27 ℃, using DMSO-d6 solvent after sample was initially digested in concentrated D2SO4. 
Inset: Expansion of the region  8.2-7.3 ppm.
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Figure S10: 1H NMR spectrum of monoUiO-66-NH2-30%-A (500.200 MHz). Spectrum 
obtained at 27 ℃, using DMSO-d6 solvent after sample was initially digested in concentrated 
D2SO4. Inset left: Expansion of the region  8.5-0.0 ppm. Inset right: Expansion of the aromatic 
region suggesting non-zero levels of BDC-NH2 after thermolabilization.
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Figure S11: 13C(1H) NMR spectrum of monoUiO-66-NH2-30%-B (125.775 MHz). Spectrum 
obtained at 27 ℃, using DMSO-d6 solvent after sample was initially digested in concentrated 
D2SO4. 
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Figure S12: 13C(1H) NMR spectrum of monoUiO-66-NH2-30%-A (125.775 MHz). Spectrum 
obtained at 27 ℃, using DMSO-d6 solvent after sample was initially digested in concentrated 
D2SO4. 
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Figure S13: Stacked 13C(1H) NMR spectra of monoUiO-66-NH2-30%-B (blue) and monoUiO-
66-NH2-30%-A (red) shown in Figures S11-S12.  

Table S1: Nanoindentation data for monoUiO-66-NH2-30%-B and monoUiO-66-NH2-30%-A. 
The average values and standard deviations were determined from 32 measurements.

SAMPLE MAX DEPTH 

(NM)

INDENTATION 

MODULUS (GPa)

HARDNESS 

(MPa)

1000 6.09 ± 0.18 185 ± 10
monoUiO-66-NH2-30%-B

2000 5.98 ± 0.24 180 ± 14

1000 4.80 ± 0.25 169 ± 16
monoUiO-66-NH2-30%-A

2000 4.58 ± 0.20 155 ±13
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Figure S14: Low pressure N2 gas adsorption data for isotherms measured at 77 K for (a) 

monoUiO-66-NH2-30%-B (solid triangles represent adsorption, and open triangles denote 
desorption); (b) monoUiO-66-NH2-30%-A (solid squares represent adsorption, and open squares 
denote desorption).
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Figure S15: Load-displacement (P-h) nanoindentation data for monoUiO-66-NH2-30%-B. 2 sets 
of 16 indents were performed in different areas, setting the maximum indentation depth to 1000 
nm. The highly reproducible P-h data reflect the homogeneity of the sample tested. 

 

Figure S16: Hardness of monoUiO-66-NH2-30%-B plotted as a function of indentation depth. 2 
sets of 16 indents were performed. Averaged hardness was determined using data collected 
over the 500-1000 nm indentation depth range, yielding 185 ± 10 MPa.
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Figure S17: Indentation modulus, E*, of monoUiO-66-NH2-30%-B plotted as a function of 
indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was 
determined using data collected over the 500-1000 nm indentation depth range, yielding 6.09 
± 0.18 GPa.

Figure S18: Load-displacement (P-h) nanoindentation data for monoUiO-66-NH2-30%-B. 2 sets 
of 16 indents were performed in different areas, setting the maximum indentation depth to 2000 
nm. The highly reproducible P-h data reflect the homogeneity of the sample tested. 
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Figure S19: Hardness of monoUiO-66-NH2-30%-B plotted as a function of indentation depth. 2 
sets of 16 indents were performed. Averaged hardness was determined using data collected 
over the 500-2000 nm indentation depth range, yielding 180 ± 14 MPa.

 

Figure S20: Indentation modulus, E*, of monoUiO-66-NH2-30%-B plotted as a function of 
indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was 
determined using data collected over the 500-2000 nm indentation depth range, yielding 5.98 ± 
0.24 GPa.
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Figure S21: Load-displacement (P-h) nanoindentation data for monoUiO-66-NH2-30%-A. 2 
sets of 16 indents were performed in different areas, setting the maximum indentation depth to 
1000 nm. The highly reproducible P-h data reflect the homogeneity of the sample tested. 

 

Figure S22: Hardness of monoUiO-66-NH2-30%-A plotted as a function of indentation depth. 2 
sets of 16 indents were performed. Averaged hardness was determined using data collected 
over the 500-1000 nm indentation depth range, yielding 169 ± 16 MPa.
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Figure S23: Indentation modulus, E*, of monoUiO-66-NH2-30%-A plotted as a function of 
indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was 
determined using data collected over the 500-1000 nm indentation depth range, yielding 4.80 
± 0.25 GPa.

Figure S24: Load-displacement (P-h) nanoindentation data for monoUiO-66-NH2-30%-A. 2 
sets of 16 indents were performed, setting the maximum indentation depth to 2000 nm. The 
highly reproducible P-h data reflect the homogeneity of the sample tested. 
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Figure S25: Hardness of monoUiO-66-NH2-30%-A plotted as a function of indentation depth. 2 
sets of 16 indents were performed. Averaged hardness was determined using data collected 
over the 500-2000 nm indentation depth range, yielding 155 ± 13 MPa.

 

Figure S26: Indentation modulus, E*, of monoUiO-66-NH2-30%-A plotted as a function of 
indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was 
determined using data collected over the 500-2000 nm indentation depth range, yielding 4.58 
± 0.20 GPa.



S18

Figure S27: DVS water sorption kinetics over three isotherm cycles for monoUiO-66-NH2-30%-
B using Intrinsic-DVS instrument at 27 °C. The sample was heated for 6 h at 40 °C and 0% 
RH between cycles.

Figure S28: Triplicated DVS water sorption isotherms for monoUiO-66-NH2-30%-B using 
Intrinsic-DVS instrument at 27 °C. The sample was heated for 6 h at 40 °C and 0% RH between 
cycles.
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Figure S29: Triplicated DVS water sorption isotherms for monoUiO-66-NH2-30%-A at 27 °C. 
The sample was heated for 6 h at 40 °C and 0% RH between cycles.

Figure S30: DVS water sorption kinetics over three isotherm cycles for monoUiO-66-NH2-
30%-A at 27 °C. The sample was heated for 6 h at 40 °C and 0% RH between cycles.


