SUPPLEMENTARY INFORMATION

WATER SORPTION STUDIES WITH MESOPOROUS MULTIVARIATE MONOLITHS BASED ON UiO-66

Linia Gedi Marazani,¹ Victoria Gascon-Perez,² Ayush Pathak,³ Michele Tricarico,⁴ Jin-Chong Tan,⁴ Michael J. Zaworotko,² Andrew E. H. Wheatley,³ Banothile C. E. Makhubela,⁵ and Gift Mehlana*1

- 1. Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, P Bag 9055 Senga Road Gweru, Zimbabwe.
- 2. Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland.
- 3. Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
- 4. Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom.
- 5. Centre for Synthesis and Catalysis, Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa.

Figure S1: Representative SEM images for the monoliths (a) $_{\text{mono}}$ UiO-66-NH₂-30%-B and (b) $_{\text{mono}}$ UiO-66-NH₂-30%-A, contrasting the smoothness of the surface of the monolith before thermolysis (a) compared to after thermolysis (b).

Figure S2: Representative low magnification SEM images for the monoliths (a) $_{\text{mono}}$ UiO-66- NH_2 -30%-B and (b) _{mono}UiO-66-NH₂-30%-A, contrasting the smoothness of the surface of the monolith before thermolysis (a) compared to after thermolysis (b).

Figure S3: Representative low magnification TEM images of (a) $_{\text{mono}}$ UiO-66-NH₂-30%-B and (b) $_{\text{mono}}$ UiO-66-NH₂-30%-A.

Figure S4: Representative TEM images of (a) monoUiO-66-NH₂-30%-B and (b) monoUiO-66-NH₂-30%-A.

Figure S5: SEM-EDX plot for $_{\text{mono}}$ UiO-66-NH₂-30%-B. Inset: Area scanned. The sample was sputter-coated with Cr for analysis.

Figure S6: EDX elemental mapping showing how the elements are dispersed in monoUiO-66-NH2-30%-B: (a) carbon, (b) oxygen, (c) composite map, (d) zirconium. All the elements are evenly dispersed throughout the monolith, as shown in (c).

Figure S7: SEM-EDX plot for monoUiO-66-NH₂-30%-A. Inset: Area scanned. The sample was sputter-coated with Cr for analysis.

Figure S8: EDX elemental mapping showing how the elements are dispersed in _{mono}UiO-66-NH2-30%-A: (a) carbon, (b) oxygen, (c) composite map, (d) zirconium, and (e) chlorine. All the elements are evenly dispersed throughout the monolith, as shown in (c).

Figure S9: ¹H NMR spectrum of _{mono}UiO-66-NH₂-30%-B (500.200 MHz). Spectrum recorded at 27 °C, using DMSO-d₆ solvent after sample was initially digested in concentrated D_2SO_4 . Inset: Expansion of the region δ 8.2-7.3 ppm.

Figure S10: ¹H NMR spectrum of $_{\text{mono}}$ UiO-66-NH₂-30%-A (500.200 MHz). Spectrum obtained at 27 °C, using DMSO- d_6 solvent after sample was initially digested in concentrated D_2SO_4 . Inset left: Expansion of the region δ 8.5-0.0 ppm. Inset right: Expansion of the aromatic region suggesting non-zero levels of BDC-NH₂ after thermolabilization.

Figure S11: ¹³C(¹H) NMR spectrum of $_{\text{mono}}$ UiO-66-NH₂-30%-B (125.775 MHz). Spectrum obtained at 27 °C, using DMSO- d_6 solvent after sample was initially digested in concentrated D_2SO_4 .

Figure S12: ¹³C(¹H) NMR spectrum of $_{\text{mono}}$ UiO-66-NH₂-30%-A (125.775 MHz). Spectrum obtained at 27 °C, using DMSO- d_6 solvent after sample was initially digested in concentrated D_2SO_4 .

Figure S13: Stacked ¹³C(¹H) NMR spectra of _{mono}UiO-66-NH₂-30%-B (blue) and _{mono}UiO- $66\text{-}NH_2$ -30%-A (red) shown in Figures S11-S12.

Table S1: Nanoindentation data for _{mono}UiO-66-NH₂-30%-B and _{mono}UiO-66-NH₂-30%-A. The average values and standard deviations were determined from 32 measurements.

SAMPLE	MAX DEPTH (NM)	INDENTATION MODULUS (GPa)	HARDNESS (MPa)
$_{\text{mono}}$ UiO-66-NH ₂ -30%-B	1000	6.09 ± 0.18	185 ± 10
	2000	5.98 ± 0.24	180 ± 14
$_{mono}$ UiO-66-NH ₂ -30%-A	1000	4.80 ± 0.25	169 ± 16
	2000	4.58 ± 0.20	155 ± 13

Figure S14: Low pressure N_2 gas adsorption data for isotherms measured at 77 K for (a) monoUiO-66-NH2-30%-B (solid triangles represent adsorption, and open triangles denote desorption); (b) $_{\text{mono}}$ UiO-66-NH₂-30%-A (solid squares represent adsorption, and open squares denote desorption).

Figure S15: Load-displacement (*P-h*) nanoindentation data for _{mono}UiO-66-NH₂-30%-B. 2 sets of 16 indents were performed in different areas, setting the maximum indentation depth to 1000 nm. The highly reproducible *P*-*h* data reflect the homogeneity of the sample tested.

Figure S16: Hardness of _{mono}UiO-66-NH₂-30%-B plotted as a function of indentation depth. 2 sets of 16 indents were performed. Averaged hardness was determined using data collected over the 500-1000 nm indentation depth range, yielding 185 ± 10 MPa.

Figure S17: Indentation modulus, E^* , of $_{\text{mono}}$ UiO-66-NH₂-30%-B plotted as a function of indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was determined using data collected over the 500-1000 nm indentation depth range, yielding 6.09 $±$ 0.18 GPa.

Figure S18: Load-displacement (*P-h*) nanoindentation data for _{mono}UiO-66-NH₂-30%-B. 2 sets of 16 indents were performed in different areas, setting the maximum indentation depth to 2000 nm. The highly reproducible *P*-*h* data reflect the homogeneity of the sample tested.

Figure S19: Hardness of _{mono}U_iO-66-NH₂-30%-B plotted as a function of indentation depth. 2 sets of 16 indents were performed. Averaged hardness was determined using data collected over the 500-2000 nm indentation depth range, yielding 180 ± 14 MPa.

Figure S20: Indentation modulus, E^* , of _{mono}UiO-66-NH₂-30%-B plotted as a function of indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was determined using data collected over the 500-2000 nm indentation depth range, yielding $5.98 \pm$ 0.24 GPa.

Figure S21: Load-displacement (*P-h*) nanoindentation data for _{mono}UiO-66-NH₂-30%-A. 2 sets of 16 indents were performed in different areas, setting the maximum indentation depth to 1000 nm. The highly reproducible *P*-*h* data reflect the homogeneity of the sample tested.

Figure S22: Hardness of _{mono}UiO-66-NH₂-30%-A plotted as a function of indentation depth. 2 sets of 16 indents were performed. Averaged hardness was determined using data collected over the 500-1000 nm indentation depth range, yielding 169 ± 16 MPa.

Figure S23: Indentation modulus, E^* , of $_{\text{mono}}$ UiO-66-NH₂-30%-A plotted as a function of indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was determined using data collected over the 500-1000 nm indentation depth range, yielding 4.80 \pm 0.25 GPa.

Figure S24: Load-displacement (*P-h*) nanoindentation data for _{mono}UiO-66-NH₂-30%-A. 2 sets of 16 indents were performed, setting the maximum indentation depth to 2000 nm. The highly reproducible *P*-*h* data reflect the homogeneity of the sample tested.

Figure S25: Hardness of _{mono}UiO-66-NH₂-30%-A plotted as a function of indentation depth. 2 sets of 16 indents were performed. Averaged hardness was determined using data collected over the 500-2000 nm indentation depth range, yielding 155 ± 13 MPa.

Figure S26: Indentation modulus, E^* , of $_{\text{mono}}$ UiO-66-NH₂-30%-A plotted as a function of indentation depth. 2 sets of 16 indents were performed. Averaged indentation modulus was determined using data collected over the 500-2000 nm indentation depth range, yielding 4.58 \pm 0.20 GPa.

Figure S27: DVS water sorption kinetics over three isotherm cycles for $_{\text{mono}}$ UiO-66-NH₂-30%-B using Intrinsic-DVS instrument at 27 °C. The sample was heated for 6 h at 40 °C and 0% RH between cycles.

Figure S28: Triplicated DVS water sorption isotherms for _{mono}UiO-66-NH₂-30%-B using Intrinsic-DVS instrument at 27 °C. The sample was heated for 6 h at 40 °C and 0% RH between cycles.

Figure S29: Triplicated DVS water sorption isotherms for _{mono}UiO-66-NH₂-30%-A at 27 °C. The sample was heated for 6 h at 40 °C and 0% RH between cycles.

Figure S30: DVS water sorption kinetics over three isotherm cycles for _{mono}UiO-66-NH₂-30%-A at 27 °C. The sample was heated for 6 h at 40 °C and 0% RH between cycles.